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using dark matter subhalos and
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Primordial fluctuations
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Primordial fluctuations

Primordial power spectrum

Pr(k)

\> Halo collapse (z ~ 30 - 100)

Hierarchical growth
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Many inflation models
predict enhancements

[Clesse+15, Byrnes+19]
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Primordial Black Hole

_______________________________________________________________________________________________ W (PBH) formation
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Moderate enhancements can produce
Ultra Compact Mini Halos (UCMHs)

[Delos+18]
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@ Much earlier collapse (z ~ 102 - 103)

[Delos+18]



Moderate enhancements can produce
Ultra Compact Mini Halos (UCMHs)

@ Much earlier collapse (z ~ 102 - 103)

@9 Potentially much stronger constraints
on the small-scale Pz (k) than PBHs

[Delos+18]



The presence of minihalos has been probed by various methods

- Y-ray fluxes [Bringmann+11, Delos+18]
@) CMB anisotropies [Kawasaki+21]

- 21cm signal [Yang+16, Furugori+20]

@ Microlensing [Erickcek+12]

) Free-free emission [Abe+21]
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If dark matter (DM) self-annihilates, minihalos

can significantly
leaving an imprint on the CMB




@) Deposited energy into the plasma per volume and time (no halos)

dE
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@) Deposited energy into the plasma per volume and time (no halos)

dE oV
TV (Z) — <p8M>2(1 + Z)6pann with  Papn = f (Z) < > <— Particle physics

m

Deposition function
(depends on annihilation channel)

Modify ionization and Alter CMB spectra

thermal history X (z), 7,(z) C;T,TE»EE

ExoCLASS = DarkAges + HyRec/Recfast + CLASS
[Stocker+18]
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Most recent constraints from PlanckTTTEEE+lensing+BAO

P < 3.2 % 1072 cm’s™1GeV ™!

(95%C.L.)

[Planck 18]
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@ In presence of halos, deposited energy is modified as

dE
=(1+B 0 (1 + 2)°
TV (2) = ( (Z))(,ODM> ( Z)”Pann
DM
2
where B(z) = (Pbm? 1 is the cosmological boost factor

(PDM)?
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Cosmological boost factor
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CMB temperature spectrum
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But how do we compute

the B(z)?
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€ Inthe framework of the halo model

1 J'M dn(M | z)

PO =y M

Bh(zf(M)a Z) dM
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€ Inthe framework of the halo model

B(z) = — JMdn(MlZ) B, (z{(M).2) dM
T )T A TR

[

Halo mass function

Depends on Py, (k)
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€ Inthe framework of the halo model

(Pm) J M dM B, (z¢{(M), z) dM

[ \

Halo mass function 1-halo boost

B(z) =

Depends on Py, (k) Depends on density profile 2,(7)



€ Inthe framework of the halo model

: JMdn(MlZ) B, (z{M).2) dM
POy 1 ay TR

[ \

Halo mass function 1-halo boost

B(z) =

Depends on Py, (k) Depends on density profile 2,(7)

Which halo mass function?
Which density profile?
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Past studies often considered peak
theory (mergers neglected) and
Moore density profiles:

—3/2
pp(r) < r [Delos+17]
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Past studies often considered peak
theory (mergers neglected) and
Moore density profiles:

—3/2
pp(r) < r [Delos+17]

Based on excursion set theory, we
propose a mixed population of halos
with different density profiles

Low-mass halos (UCMH):  p,(r) & r—*

High-mass halos (NFW):  p,(r) o< 7~
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RECIPE

to get the constraints
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Modified version of ExoCLASS

Data from PlanckTTTEEE
+lensing+BAO+SNIa

Instructions
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RECIPE

to get the constraints

Ingredients

@9 Modified version of ExoCLASS

@ Data from PlanckTTTEEE
+lensing+BAO+SNIa

Instructions

1) Consider a spike at large k

k

ns—1
—) A bk — k)
Ko

Pr(k) = A, (

71 Compute boost factor and the DM
annihil. signal in the CMB (ExoCLASS)

€= Compare prediction against Planck data

(77 Obtain constraints on A, vs. k,
(for a fiducial param. Pan, & (ov)/mpy )
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A note on priors
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A note on priors

Typical value for the
free-streaming scale of WIMPs
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A note on priors

0 < Logig(ks/Mpc) <

—8 S LogloA* S —4

Larger amplitudes may
lead to PBH formation

or minihalo formation
during the radiation era

Typical value for the
free-streaming scale of WIMPs

18



RESULTS
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RESULTS
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@ Accounting for mergers leads
to slightly weaker bounds

@ Expected to be much more
relevant for lower-z probes
(e.g. 21 cm signal)
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RESULTS

@ So far, we only looked at
s-wave DM annihilations

(ov) =0y + oV + ...

S-wave p-wave
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RESULTS

@ So far, we only !o?kefj at (6vY =06y + oV +...
s-wave DM annihilations s-wave  p-wave

@ p-wave terms might be non-negligible (velocity is enhanced in
virialised structures). In addition, bounds on o, are very weak
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RESULTS

@ So far, we only !Of)ke.d at (6v) =06y + o v2+...
s-wave DM annihilations s-wave  p-wave

@ p-wave terms might be non-negligible (velocity is enhanced in
virialised structures). In addition, bounds on o, are very weak

@ First calculation of p-wave boost factor in presence of UCMHSs
(we use Jeans eq. to relate velocity dispersion with density profile)
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RESULTS
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RESULTS

LogloA*
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RESULTS

LOgloA*
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@ p-wave constraints are
competitive at small k

) Relevant for models that
predict vanishing s-wave
terms
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RESULTS
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2.

Constraints on neutrino masses
using dark matter subhalos and
Milky-Way satellites




Ongoing work with

Shin’ichiro Ando (GRAPPA)

Youyou Li (GRAPPA)

David Krejcik

Yonnes Lourens

Antoine Marechal Master students

Tiernan O’Neill at UVA

Scott Visser

Kjartan van Driel 2.
Maxim Zewe

Constraints on neutrino masses
using dark matter subhalos and
Milky-Way satellites




ACDM predicts structure formation across a wide range of scales

Earth-mass halos dwarf galaxies clusters of galaxies

Not resolved
by simulations:

-10 -6 -2 2 i 6 8

Free-streaming
scale of WIMPs logo(M/M)

galaxies
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ACDM predicts structure formation across a wide range of scales

Earth-mass halos dwarf galaxies clustrs f aaxies

Not resolved :
by simulations:

-10 -6 -2 2 i 6 8

Free-streaming
scale of WIMPs logo(M/M)

galaxies

) Important to model them analytically
Subhalos: smaller halos that

accreted onto a larger host

£ ) Provide a valuable way to test models
that change the growth of structures

24



Massive neutrinos suppress the matter power spectrum at scales

. . 1/2
smaller than their free-streaming length: k. (z,) ~ 0.01 (m,/eV) "~ h Mpc™!
<« MB——————>»
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Massive neutrinos suppress the matter power spectrum at scales

smaller than their free-streaming length: 4. (z,) ~ 0.01 (m,/eV
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@ Dark Energy Survey and Pan-STARRS1 have
reported 270 ultrafaint Milky-Way satellite
galaxies after completeness correction
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£ Areduction in the subhalo mass function
translates into a reduction of the number of
satellites
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100,000 light years

@ Dark Energy Survey and Pan-STARRS1 have
reported 270 ultrafaint Milky-Way satellite
galaxies after completeness correction

£ Areduction in the subhalo mass function
translates into a reduction of the number of
satellites

\’ Use this to constrain

heutrino masses

26



SASHIMI: Semi-Analytical SubHalo Inference Modellng
Publicly available at https://github.com/shinichiroando/sashimi-c

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore

H shinichiroando [ sashimi-c  Public ®©Wwatch 1 ~ % Fork 1~ vy Star 2~

<> Code () Issues % Pullrequests () Actions [ Projects (O Security [~ Insights

¥ main ~ # 1branch © 0 tags Go to file Add file ~ About

No description, website, or topics

shinichiroando small change 5d9d5c2 on Nov 15,2022 &) 21 commits provided.

[ README.md revise last year O Readme
Ar Activity

[ sample.ipynb Add files via upload last year
¥y 2 stars

Y sashimi_c.py small change 7 months ago ® 1watching
¥ 1fork

= README.md Report repository

Semi-Analytical SubHalo Inference Modellng for Releases
CDM (SASHIMI'C) No releases published

Packages
The codes allow to calculate various subhalo properties efficiently using semi-analytical models for cold dark

matter (CDM). The results are well in agreement with those from numerical N-body simulations. No packages published

Authors Languages
« Shin'ichiro Ando N R
® Jupyter Notebook 80.0%
* Nagisa Hiroshima e Python 20.0%

* Ariane Dekker

Special thanks to Tomoaki Ishiyama, who provided data of cosmological N-body simulations that were used for
calibration of model output.

Please send enquiries to Shin'ichiro Ando (s.ando@uva.nl). We have checked that the codes work with python 3.9
but cannot guarantee for other versions of python. In any case, we cannot help with any technical issues not
directly related to the content of SASHIMI (such as installation, sub-packages required, etc.)
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Report repository
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Languages
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® Jupyter Notebook 80.0%
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¢ Based on excursion set theory and
subhalos’ tidal evolution prescription

@ Allows to calculate efficiently subhalo
boost factor, subhalo mass function, etc
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SASHIMI: Semi-Analytical SubHalo Inference Modellng
Publicly available at https://github.com/shinichiroando/sashimi-c

O Search or jump to... Pull requests Issues Codespaces Marketplace Explore
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Semi-Analytical SubHalo Inference Modellng for

CDM (BASHBAI-C) @ Allows to calculate efficiently subhalo

No releases published

boost factor, subhalo mass function, etc

No packages published

The codes allow to calculate various subhalo properties efficiently using semi-analytical models for cold dark
matter (CDM). The results are well in agreement with those from numerical N-body simulations.

Authors

Languages

¢ Shin'ichiro Ando
® Jupyter Notebook 80.0%

» Nagisa Hiroshima ® Python 20.0%

* Ariane Dekker

[ ]
Special thanks to Tomoaki Ishiyama, who provided data of cosmological N-body simulations that were used for R e S u lt S a re e We l l W] t h t h O S e
calibration of model output.

Please send enquiries to Shin'ichiro Ando (s.ando@uva.nl). We have checked that the codes work with python 3.9

[ ] [ ]
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SASHIMI has already been
used to set stringent bounds

on Warm Dark Matter mass
with MW satellite data

[Dekker+ 21]
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1 1 !
—@- Cherry et al. 2017
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---Newton et al. 2021

------- ennedy et al.
SASHIMI has already been 81 + Ea"".".f;?‘f@"}? -

0\{e et al.
used to set stringent bounds | < Polisensky etal 201

My = 108 Mo
B Canonical
B Viyax > 4km/s

on Warm Dark Matter mass
with MW satellite data

[Dekker+ 21]

Mwpm [keV]
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In a similar way, we can derive bounds on neutrino masses
by modifying SASHIMI code accordingly
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RESULTS

Mo > 10° Mg and My = 10'2 M,
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Surprisingly, we find an
increase in the number of

satellites for large neutrino
masses!
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RESULTS

102

sat( = Vmax)

< 10!

109

Mo > 10° Mg and My = 10" M,

—— 2 m,=0.03eV
z m,=0.27eV
> my=1.14eV

—— 2 my=1.85eV 7

— 2 m,=3.0eV -

//

10!

Vimax [km s71]

Surprisingly, we find an
increase in the number of

satellites for large neutrino
masses!

Is this result robust?
More work to be done...
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Summary

¢ Robust CMB bounds on small-scale Pz (k) using
both s-wave and p-wave DM annihil. in minihalos
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Summary THANKS FOR
YOUR ATTENTION

g.francoabellan@uva.nl

¢ Robust CMB bounds on small-scale Pz (k) using
both s-wave and p-wave DM annihil. in minihalos

@ New formalism that allows to better take into account effects
of halo mergers (relevant for 21cm studies)

€ Minihalos extend observable window of inflation in presence
of CDM, coupling two key problems in cosmology

@ MW satellites and subhalo evolution modelling provide a
complementary way to test neutrino masses
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The CMB in a nutshell

@ Line-of-sight solution

T

O (70, k) = J dr S(7, k) j(k(zy — 7))

T

7 Source function
SH(7,k) = g(®y + ¥) + 0,(gv,/k) + e (D + V)

-~

SW Doppler ISW

7 \visibility function and optical depth

%o
9(7) = — k(1)e ™, K(7) = J dr act n,

)

Energy injection from DM could affect ne,
which directly impacts CMB anisotropies
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Exotic energy injection in the CMB

DM annihilations have three effects:
ionization, excitation and heating

e _ 2 + Iy +1
dz _ dz Xy ' X
St

dl dl
h _ 76 K,
dz dz
st
dE

with IXO; IXia Kh X X' Pann

DM

adVdt

Is

*

[Giesen+12]
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Excursion set theory

¢ Halo mass function:

dnM|z) _ (pm) vM,2) | dS | 2 .0 D(0
— Il \/;e M2 sh oMz = 2O (0)

dM M 2SM) | dM \/S(M) and a)(Z)EécD(Z)

) Smoothed variance:

o0

al%:S(R)NJ TP (k) | We(k) |7dk  with M = (p0)yR3
0
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Variance in presence of spike

M [Mg] (y = 672)

R S S S S @ With asharp-k window function:
10° - — — sharp—k
; S -~ top — hat SoM) = a(M) + pOM, — M)
: 0\, =3
10* 5 W]th Ms Il <pm>yk*
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= 10% - : :
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I\
| ‘r
10° - — no spike [Mmjn9 MS] U [Msa OO]
1[— &, = 10 Mpc—!, A, = 106
1l— k, =103 Mpc—!, A, = 10~6
10" §|— k, = 10° Mpc™!, A, = 108
1077 106 10 104 10*  10-2 101 10° UCMH NFW

R [Mpc] profile profile



Boost factor: comparison between formalisms

. —— BBKS
————— EST, only spike, Z¢(M[)
_____ EST, spiketsmooth, Z;( M)

ol T~ e EST, spike+smooth, (Z¢(M,))
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Q
+ 107
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—
o
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< 10
+>
P
@)
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103.

101.
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T T T T T T

Redshift z
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Boost factor: s-wave vs. p-wave

107 —— k=1 Mpc!
—— k, =10 Mpc !
k, = 10> Mpc ™!
5.
. k, = 103 Mpc ™!
S
5 10°-
=
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0 ——
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iy r——m -
0 N \’\‘
N, \
\'\.\ __________________ -\
_______ ~\
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Y
.
\ A\
107 10° 10! 107 103
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Constraints for different DM masses and annihil. channels

LogloA*

—7.5"

—3.0

Excluded by CMB anisotropies

m, = 100 GeV

0—26 Cm3 S—l

op =9 X1

3 o1

2 A 6
Logyg(ke/Mpc™)
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Press-Schechter halo mass function
for ACDM, vVACDM and AWDM cosmologies
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