Small-scale probes of the early universe and late universe

Guillermo Franco Abellán

Université Libre de Bruxelles - 08/06/2023

1. EARLY UNIVERSE

Constraints on the primordial power spectrum using dark matter minihalos and the CMB

2. LATE UNIVERSE

Constraints on neutrino masses using dark matter subhalos and Milky-Way satellites

1. EARLY UNIVERSE

Constraints on the primordial power spectrum using dark matter minihalos and the CMB

1. EARLY UNIVERSE

Constraints on the primordial power spectrum using dark matter minihalos and the CMB

Based on: arXiv:2304.02996

with Gaétan Facchinetti

Primordial power spectrum $\mathcal{P}_{\mathcal{D}}(k)$

Hierarchical growth

Primordial Black Hole (PBH) formation

Moderate enhancements can produce Ultra Compact Mini Halos (UCMHs)

[Delos+18]

Moderate enhancements can produce Ultra Compact Mini Halos (UCMHs)

[Delos+18]

Much earlier collapse ($z \sim 10^2 - 10^3$)

Moderate enhancements can produce Ultra Compact Mini Halos (UCMHs)

Much earlier collapse (z ~ 10² – 10³)

Potentially much stronger constraints on the small-scale $\mathcal{P}_{\mathcal{R}}(k)$ than PBHs

[Delos+18]

The presence of minihalos has been probed by various methods

- γ-ray fluxes [Bringmann+11, Delos+18]
- CMB anisotropies [Kawasaki+21]
- 21cm signal [Yang+16, Furugori+20]
- Microlensing [Erickcek+12]
- Free-free emission [Abe+21]

The presence of minihalos has been probed by various methods

- γ-ray fluxes [Bringmann+11, Delos+18]
- CMB anisotropies [Kawasaki+21]
- 21cm signal [Yang+16, Furugori+20]
- Microlensing [Erickcek+12]
- Free-free emission [Abe+21]

If dark matter (DM) self-annihilates, minihalos can significantly boost the DM annihilation signal, leaving an imprint on the CMB

$$\frac{dE}{dVdt} \bigg|_{DM} (z) = \langle \rho_{DM}^0 \rangle^2 (1+z)^6 p_{ann}$$

$$\frac{dE}{dVdt} \bigg|_{DM} (z) = \langle \rho_{DM}^0 \rangle^2 (1+z)^6 p_{ann} \quad \text{with} \quad p_{ann} = f(z) \frac{\langle \sigma v \rangle}{m_{DM}}$$

$$\frac{dE}{dVdt} \bigg|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \qquad {\rm with} \qquad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \qquad {\rm Particle\ physics}$$

$$\frac{dE}{dVdt} \bigg|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \qquad \text{with} \qquad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \qquad \text{Particle physics}$$
 Deposition function (depends on annihilation channel)

$$\frac{dE}{dVdt} \bigg|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \qquad \text{with} \qquad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \qquad \text{Particle physics}$$
 Deposition function (depends on annihilation channel)

$$\frac{dE}{dVdt} \bigg|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \qquad \text{with} \qquad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \qquad \text{Particle physics}$$
 Deposition function (depends on annihilation channel)

Most recent constraints from PlanckTTTEEE+lensing+BAO

$$p_{\rm ann} < 3.2 \times 10^{-28} \, \rm cm^3 s^{-1} GeV^{-1}$$
 (95 % C.L.)

[Planck 18]

In presence of halos, deposited energy is modified as

$$\frac{dE}{dVdt} \bigg|_{DM} (z) = (1 + B(z))\langle \rho_{DM}^0 \rangle^2 (1 + z)^6 p_{ann}$$

where
$$B(z) \equiv \frac{\langle \rho_{\rm DM}^2 \rangle}{\langle \rho_{\rm DM} \rangle^2} - 1$$
 is the cosmological boost factor

But how do we compute the boost factor B(z)?

$$B(z) = \frac{1}{\langle \rho_{\rm m}^0 \rangle} \int M \frac{dn(M|z)}{dM} B_h(z_{\rm f}(M), z) dM$$

$$B(z) = \frac{1}{\langle \rho_{\rm m}^0 \rangle} \int M \frac{dn(M \mid z)}{dM} \quad B_h(z_{\rm f}(M), z) \ dM$$
 Halo mass function Depends on $\mathcal{P}_{\mathcal{R}}(k)$ Depends on density profile $\rho_h(r)$

Which halo mass function? Which density profile?

Past studies often considered peak theory (mergers neglected) and Moore density profiles:

$$\rho_h(r) \propto r^{-3/2}$$
 [Delos+17]

Past studies often considered peak theory (mergers neglected) and Moore density profiles:

$$\rho_h(r) \propto r^{-3/2}$$
 [Delos+17]

Based on excursion set theory, we propose a mixed population of halos with different density profiles

Low-mass halos (UCMH): $\rho_h(r) \propto r^{-3/2}$

High-mass halos (NFW): $\rho_h(r) \propto r^{-1}$

Instructions

RECIPE TO

to get the constraints

Ingredients

- Modified version of ExoCLASS
- Data from PlanckTTTEEE
 +lensing+BAO+SNIa

RECIPE T

to get the constraints

Ingredients

- Modified version of ExoCLASS
- Data from PlanckTTTEEE +lensing+BAO+SNIa

Instructions

Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

RECIPE 1

to get the constraints

Ingredients

- Modified version of ExoCLASS
- Data from PlanckTTTEEE +lensing+BAO+SNIa

Instructions

1. Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

Compute **boost factor** and the **DM** annihil. signal in the CMB (ExoCLASS)

RECIPE T

to get the constraints

Ingredients

- Modified version of ExoCLASS
- Data from PlanckTTTEEE
 +lensing+BAO+SNIa

Instructions

1. Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

- 2. Compute **boost factor** and the **DM** annihil. signal in the CMB (ExoCLASS)
- Compare prediction against Planck data

RECIPE TO

to get the constraints

Ingredients

- Modified version of ExoCLASS
- Data from PlanckTTTEEE
 +lensing+BAO+SNIa

Instructions

1. Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

- 2. Compute **boost factor** and the **DM** annihil. signal in the CMB (ExoCLASS)
- 3. Compare prediction against Planck data

4. Obtain constraints on \mathcal{A}_{\star} vs. k_{\star} (for a fiducial param. $p_{\rm ann} \propto \langle \sigma v \rangle / m_{\rm DM}$)

A note on priors

$$\begin{cases}
0 \le \operatorname{Log}_{10}(k_{\star}/\operatorname{Mpc}^{-1}) \le 7 \\
-8 \le \operatorname{Log}_{10}\mathcal{A}_{\star} \le -4
\end{cases}$$

A note on priors

$$0 \leq \operatorname{Log}_{10}(k_{\star}/\operatorname{Mpc}^{-1}) \leq 7$$

$$-8 \leq \operatorname{Log}_{10}\mathcal{A}_{\star} \leq -4$$

Typical value for the **free-streaming** scale of WIMPs

A note on priors

$$0 \leq \operatorname{Log}_{10}(k_{\star}/\operatorname{Mpc}^{-1}) \leq 7$$

$$-8 \leq \operatorname{Log}_{10}\mathcal{A}_{\star} \leq -4$$

Typical value for the **free-streaming** scale of WIMPs

Larger amplitudes may lead to **PBH formation** or minihalo formation during the radiation era

Accounting for mergers leads to slightly weaker bounds

Accounting for mergers leads to slightly weaker bounds

Expected to be much more relevant for lower-z probes (e.g. 21 cm signal)

So far, we only looked at s-wave DM annihilations

$$\langle \sigma v \rangle = \sigma_0 + \sigma_1 v^2 + \dots$$
s-wave p-wave

So far, we only looked at s-wave DM annihilations

$$\langle \sigma v \rangle = \sigma_0 + \sigma_1 v^2 + \dots$$

s-wave p-wave

p-wave terms might be non-negligible (velocity is enhanced in virialised structures). In addition, bounds on σ_1 are very weak

So far, we only looked at s-wave DM annihilations

$$\langle \sigma v \rangle = \sigma_0 + \sigma_1 v^2 + \dots$$
s-wave p-wave

p-wave terms might be non-negligible (velocity is enhanced in virialised structures). In addition, bounds on σ_1 are very weak

First calculation of p-wave boost factor in presence of UCMHs (we use Jeans eq. to relate velocity dispersion with density profile)

p-wave constraints are competitive at small k

p-wave constraints are competitive at small k

Relevant for models that predict vanishing s-wave terms

2. LATE UNIVERSE

Constraints on **neutrino masses** using dark matter **subhalos** and **Milky-Way satellites**

Ongoing work with

Shin'ichiro Ando (GRAPPA)

Youyou Li (GRAPPA)

David Krejcik

Yonnes Lourens

Antoine Marechal

Tiernan O'Neill

Scott Visser

Kjartan van Driel

Maxim Zewe

Master students at UVA

2. LATE UNIVERSE

Constraints on neutrino masses using dark matter subhalos and Milky-Way satellites

Subhalos: smaller halos that accreted onto a larger host

Subhalos: smaller halos that accreted onto a larger host

Important to model them analytically

Subhalos: smaller halos that accreted onto a larger host

- Important to model them analytically
- Provide a valuable way to **test** models that change **the growth of structures**

Massive neutrinos suppress the matter power spectrum at scales smaller than their **free-streaming length:** $k_{\rm fs}(z_{\rm nr}) \simeq 0.01 \left(m_{\nu}/{\rm eV}\right)^{1/2} h~{\rm Mpc}^{-1}$

Massive neutrinos suppress the matter power spectrum at scales smaller than their **free-streaming length:** $k_{\rm fs}(z_{\rm nr}) \simeq 0.01 \left(m_{\nu}/{\rm eV}\right)^{1/2} h~{\rm Mpc}^{-1}$

Very stringent limits from PlanckTTTEEE+lensing+BAO:

$$\sum m_{\nu} < 0.12 \text{ eV} (95\% \text{ C.L.})$$

Dark Energy Survey and Pan-STARRS1 have reported **270 ultrafaint Milky-Way satellite** galaxies after completeness correction

Dark Energy Survey and Pan-STARRS1 have reported **270 ultrafaint Milky-Way satellite** galaxies after completeness correction

A reduction in the subhalo mass function translates into a **reduction of the number of satellites**

Dark Energy Survey and Pan-STARRS1 have reported **270 ultrafaint Milky-Way satellite** galaxies after completeness correction

A reduction in the subhalo mass function translates into a **reduction of the number of satellites**

Use this to constrain neutrino masses

Publicly available at https://github.com/shinichiroando/sashimi-c

Publicly available at https://github.com/shinichiroando/sashimi-c

Based on excursion set theory and subhalos' tidal evolution prescription

Publicly available at https://github.com/shinichiroando/sashimi-c

Based on excursion set theory and subhalos' tidal evolution prescription

Allows to calculate efficiently subhalo boost factor, subhalo mass function, etc

Publicly available at https://github.com/shinichiroando/sashimi-c

Based on excursion set theory and subhalos' tidal evolution prescription

Allows to calculate efficiently subhalo boost factor, subhalo mass function, etc

Results agree well with those from N-body simulations

SASHIMI has already been used to set **stringent bounds on Warm Dark Matter** mass with MW satellite data

[Dekker+ 21]

SASHIMI has already been used to set **stringent bounds on Warm Dark Matter** mass with MW satellite data

[Dekker+ 21]

In a similar way, we can derive bounds on neutrino masses by modifying SASHIMI code accordingly

RESULTS

Surprisingly, we find an increase in the number of satellites for large neutrino masses!

RESULTS

Surprisingly, we find an increase in the number of satellites for large neutrino masses!

Is this result robust?

More work to be done...

Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos

- Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos
- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)

- Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos
- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)
- Minihalos extend observable window of inflation in presence of CDM, coupling two key problems in cosmology

- Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos
- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)
- Minihalos extend observable window of inflation in presence of CDM, coupling two key problems in cosmology
- MW satellites and subhalo evolution modelling provide a complementary way to test neutrino masses

Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos

THANKS FOR YOUR ATTENTION

g.francoabellan@uva.nl

- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)
- Minihalos extend observable window of inflation in presence of CDM, coupling two key problems in cosmology
- MW satellites and subhalo evolution modelling provide a complementary way to test neutrino masses

BACK-UP

The CMB in a nutshell

$$\mathcal{D}_{\ell}^{TT} \equiv \ell(\ell+1)C_{\ell}^{TT} \sim \int d\log k \ \Theta_{\ell}^{2}(\tau_{0}, k)\mathcal{P}_{\mathcal{R}}(k)$$

Line-of-sight solution

$$\Theta_{\ell}(\tau_0, k) = \int_{\tau}^{\tau_0} d\tau \ S_T(\tau, k) \ j_{\ell}(k(\tau_0 - \tau))$$

Source function

$$S_T(\tau, k) \equiv g(\Theta_0 + \Psi) + \partial_{\tau}(gv_b/k) + e^{-\kappa}(\dot{\Phi} + \dot{\Psi})$$
SW Doppler ISW

Visibility function and optical depth

$$g(\tau) \equiv -\dot{\kappa}(\tau)e^{-\kappa(\tau)}, \qquad \kappa(\tau) = \int_{\tau}^{\tau_0} d\tau \ a\sigma_{\rm T} \ n_{\rm e}$$

Energy injection from DM could affect n_e, which directly impacts CMB anisotropies

Exotic energy injection in the CMB

DM annihilations have three effects:

ionization, excitation and heating

$$\frac{dx_e}{dz} = \frac{dx_e}{dz} \bigg|_{\text{st}} + I_{X_a} + I_{X_i}$$

$$\frac{dT_b}{dz} = \frac{dT_b}{dz} \bigg|_{\text{st}} + K_h$$

with
$$I_{X_a}$$
, I_{X_i} , $K_h \propto \frac{dE}{dVdt}\Big|_{DM} \propto p_{ann}$

[Giesen+12]

Excursion set theory

Halo mass function:

$$\frac{\mathrm{d}n(M\mid z)}{\mathrm{d}M} = \frac{\langle \rho_{\mathrm{m}}^{0} \rangle}{M} \frac{\nu(M,z)}{2S(M)} \left| \frac{\mathrm{d}S}{\mathrm{d}M} \right| \sqrt{\frac{2}{\pi}} e^{-\nu^{2}(M,z)/2} \quad \text{with} \quad \nu(M,z) \equiv \frac{\omega(z)}{\sqrt{S(M)}} \quad \text{and} \quad \omega(z) \equiv \delta_{\mathrm{c}} \frac{D(0)}{D(z)}$$

Smoothed variance:

$$\sigma_R^2 = S(R) \sim \int_0^\infty k^3 T^2(k) \mathcal{P}_{\mathcal{R}}(k) |\hat{W}_R(k)|^2 dk \quad \text{with} \quad M = \langle \rho_{\rm m}^0 \rangle \gamma R^3$$

Variance in presence of spike

With a sharp-k window function:

$$S_0(M) = \alpha(M) + \beta\Theta(M_{\rm S} - M)$$
 with $M_{\rm S} = \langle \rho_{\rm m}^0 \rangle \gamma k_{\star}^{-3}$

Idea: split mass interval as

Boost factor: comparison between formalisms

Boost factor: s-wave vs. p-wave

Constraints for different DM masses and annihil. channels

Press-Schechter halo mass function for Λ CDM, $\nu\Lambda$ CDM and Λ WDM cosmologies

