Implications of the Sg tension
for decaying dark matter

Guillermo Franco Abellan

w/ R. Murgia, V. Poulin, PRD 104 (2021)
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What is needed to explain low Sg values ?

@ Q..should be left unchanged (well
constrained by SNla & galaxy clustering)

@) Suppress power at scales
k~0.1—-1 h/Mpc

@ Modify only perturbation properties
(expansion history well constrained
by low-z probes)

Sy = 034/Q, /0.3

g = me(k, z = 0)Wx(k)dInk

Ex: Warm dark matter
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Very constrained by Ly-& !
[Ir$ié+ 17]


https://arxiv.org/search/astro-ph?searchtype=author&query=Ir%C5%A1i%C4%8D%2C+V
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Decaying Dark Matter (DDM)

@) Well motivated theoretically (ex: R-parity violation)

€ Decay products?

o To SM particles
Model-dependent, strongly constrained I'"! > 10’ — 10'° ¢,

[Blanco+ 18]

Q To dark radiation

What about
Model-independent, less constrained I'"! > 10 1,,

massive products?
[Nygaard+ 20]



DDM with massive decay products

We explore DM decays to
massless (Dark Radiation) and

massive (\Warm Dark Matter) particles



DDM with massive decay products

2 extra parameters:
We explore DM decays to

Decay rate [

massless (Dark Radiation) and

massive (\Warm Dark Matter) particles DR energy fraction &

1 m?2 = ( (ACDM)
Epgr = em, e=—11 2
){ 2 m2 =1/2 (DM — DR)




GOAL

Perform a parameter scan by including
full treatment of linear perts., in order
to assess the impact on the Ss tension



Evolution of DDM perturbations

€ Track i, 0; and o; fori=dm, dr, idm

@ Boltzmann hierarchy of egs., dictate evolution of
p.s.d. multipoles &f;(q, k, T)



Evolution of DDM perturbations

€ Track i, 0; and o; fori=dm, dr, idm

@ Boltzmann hierarchy of egs., dictate evolution of
p.s.d. multipoles &f;(q, k, T)

‘ For DM and DR, momentum d.o.f. are integrated out

‘ For WDM, need to follow full evolution in phase space
Computationally prohibitive, 6(10°) ODEs to solve!



New fluid equations for the WDM species

@ Based on previous approximation for massive neutrinos
[Lesgourgues+ 11]
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New fluid equations for the WDM species

@ Based on previous approximation for massive neutrinos
[Lesgourgues+ 11]
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New fluid equations for the WDM species

@ Based on previous approximation for massive neutrinos
[Lesgourgues+ 11]

h' Pam
fdm = — .”aH(cSZyn — W)0ywam — (1 +w) (dem + ?) +al'(1 — 8),5 dd (Ogm — Owdm)

2 — 2
csyn ) 2 Pdm 1+ Ca

= —al'(1 — ¢ 0
4w Owdm =K Cam ( )ﬁwdm 1+w "

/
dem

= —aH(1 -3¢0, 4., +

CPU time reduced from
~ 41 day to ~ 1 minute !!
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P(k) more affected by the WDM
(suppression at k > kss ):

rf

el

0.0 -

-0.1 \
—-0.2
t=0) 3 r_1=30GyrS
-0.4
—0.54— £=0.1

— £=0.01
_0.6__ €=0.001

1074 1073 1072 1071 109

k [h/Mpc]



[e)
Q.
=
~
()]
~~
-
Y4

H(z)/(1 + 2)

H(z) more affected by the DR:
rt el

=
@)
o

i
—— M 1=3Gyrs

140 ,,’
-——— £=0.2 .

—— =03 Gyrs —.— £=0.5

=
N
o

=
o
o

401

With large I and small €, we can

achieve a P(k) suppression while
leaving H(z) unaffected
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To compare against
weak-lensing data,
we need the non-
linear prediction
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To compare against
weak-lensing data,
we need the non-
linear prediction

BUT

this would require to
run many expensive

ADDM simulations

Use a Sg prior instead
(very simplistic, but
should be seen as

a minimal test)

v



Explaining the Sg tension

@ Reconstructed Sgvalues are in
excellent agreement with WL data

Planck18 + BAO + SNla
+ Sg (KiDS+BOSS+2dfLenS):

B /\DDM
B A\CDM

= ErEs TR T
Log;(T/Gyrs™") Logo(¢) Ss
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Explaining the Sg tension

Planck18 + BAO + SNla
+ Sg (KiDS+BOSS+2dfLenS):
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! ~ 55 (¢/0.007) Gyr
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Why does the DDM model provide a better fit?

—— ADDM Best-fit
—— VACDM (M, =0.27 eV)
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Why does the DDM model provide a better fit?

S 1| N
> | —z=0 T Suppression
5 02 —-- mainly affecting
%" non-linear scales
-0.31 __ ADDM Best-fit (see A. Amon’s talk)
—— VvACDM (M, =0.27 eV)
~0.4
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Why does the DDM model provide a better fit?

Lower suppression
in the past

Suppression

mainly affecting
non-linear scales

(see A. Amon’s talk)
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—— NADDM Best-fit

{—— vACDM (M, =0.27 eV)

\

—
multipole/

Why does the DDM model provide a better fit?

Time-dependence
of DDM suppression
allows for a better
fit to CMB data
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Prospects for DDM

¢ Future accurate foz and CMB data
will be able to capture DDM signature
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Prospects for DDM

¢ Future accurate foz and CMB data
will be able to capture DDM signature

¢ Run DDM simulations, to test model
against non-linear observables like
Cosmic Shear or Lyman-« forest
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0.7

Prospects for DDM
051 & 4t |
S LTI i
0.4-,'/'9/ ! T ,F
0.31 i Wigglez
) Future accurate fos and CMB data
will be able to capture DDM signature oo o2 oa 05 08 10 12 14 1is

¢ Run DDM simulations, to test model
against non-linear observables like
Cosmic Shear or Lyman-« forest

B ADDM vs fake Planck

Bl ADDM vs CMB-54

¢ Mildly non-linear analysis using
the EFTofBOSS data already
improves constraints on lifetime

[Simon+ 22] Logy(T'/Gyrs ™) Logyo(e)
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Conclusions

) First thorough cosmological analysis of this
2-body DM decay scenario by including a full
treatment of perturbations
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Conclusions

) First thorough cosmological analysis of this
2-body DM decay scenario by including a full
treatment of perturbations

@ It can successfully explain the Sg anomaly

while providing a good fit to CMB, BAO and
SNla data

) Future accurate growth factor and CMB data
will be able to further test this scenario

AR B
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Conclusions

THANKS FOR YOUR ATTENTION
guillermo.franco-abellan@umontpellier.fr
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General constraints

Plancki8 + BAO + SNIla:

—— This work
—— C(lark et al. 2020
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General constraints

Planck18 + BAO + SNIia:
Constraints up to 1 order of

magnitude stronger than
former works due to the
inclusion of WDM perts.

—— This work
—— C(lark et al. 2020
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Interesting implications

@ Model building

Why € << 1/2, i.e. Mwdm ~ Mdm ?
Ex: Supergravity

[Choi+ 21]
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Interesting implications

@ Model building

Why € << 1/2, i.e. Mwdm ~ Mdm ?
Ex: Supergravity

[Choi+ 21]

Abellén et al. 2020 (favored by Sg)
K Thiswork (excluded by MW Satellites)

MW Host

@ Smallscales

Reduction in the abundance
of subhalos, can be constrained

MW Satellites

*
by observations of MW satellites
" RARIKIKIK KKK
[DES 22] B 0000000702020 20 02020 2020205000 %

SOSOSO 008 90 0 00 20202020202020%
CRERERRAEKEKKK
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The full Boltzmann hierarchy

g, k, u, ) = flg, 7) + 5f(q, k, p, 7)

Expand 6f in multipoles. The Boltzmann eq. leads to the following hierarchy
(in synchronous gauge comoving with the mother)

qk of h TN, (1)

of + + (T —7,)04,
2B 95,6 angem O T

0
= (o) =

9 (sr) = I 1sp
ar (Oh) = 5 1= 2]

0 _ Gk o of (h+61)

o0 (0h) =5, [20h =30 Toq 15
- (6fr) = & 25, — (£ + Dof,yy|  (for £ > 3)
or * 7 2¢+DaE b ! o+ —

where g = a(z )p,,, - In the relat. limit q/aE =1 , so one can take

4 [
F,= ~ dg ¢°8f, and integrate out the dependency on q

Pc
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Checking the accuracy of the WDM fluid approx.

We compare the full Boltzmann hierarchy calculation with the WDM fluid approx.

The max. error on Sg is ~0.65 %, smaller than the ~1.8 % error of the
measurement from BOSS+KiDS+2dfLenS

0
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Impact of DDM on the CMB temperature spectrum

Low-# : enhanced Late Integrated Sachs Wolfe (LISW) effect

High-# : suppressed lensing (higher contrast between peaks)
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DDM resolution to the Ss tension

The level of detection depends on the level of tension with ACDM

B DES-Y1
B KiDS-1000+BOSS+2dFLens
B KiDS-1000+Viking+DES-Y1
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DDM results with linear priors
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DDM results with SPTPol and ACT datasets

B baseline+SPTpol+Sg

B baseline+Sg
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1 W/ Alens
] W/O Alens

DDM results
marginalizing
over lensing
information
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