Probing the primordial power spectrum with dark matter minihalos and the CMB

Guillermo Franco Abellán

Based on: arXiv:2304.02996

with Gaétan Facchinetti (ULB)

PONT - 03/05/2023

Primordial power spectrum $\mathcal{D}_{\mathcal{D}}(k)$

Hierarchical growth

Primordial Black Hole (PBH) formation

Moderate enhancements can produce Ultra Compact Mini Halos (UCMHs)

[Delos+18]

Moderate enhancements can produce Ultra Compact Mini Halos (UCMHs)

[Delos+18]

Much earlier collapse ($z \sim 10^2 - 10^3$)

Moderate enhancements can produce Ultra Compact Mini Halos (UCMHs)

Much earlier collapse ($z \sim 10^2 - 10^3$)

Potentially much stronger constraints on the small-scale $\mathcal{P}_{\mathcal{R}}(k)$ than PBHs

[Delos+18]

The presence of minihalos has been probed by various methods

- γ-ray fluxes [Bringmann+11, Delos+18]
- CMB anisotropies [Kawasaki+21]
- 21cm signal [Yang+16, Furugori+20]
- Microlensing [Erickcek+12]
- Free-free emission [Abe+21]

The presence of minihalos has been probed by various methods

- γ-ray fluxes [Bringmann+11, Delos+18]
- CMB anisotropies [Kawasaki+21]
- 21cm signal [Yang+16, Furugori+20]
- Microlensing [Erickcek+12]
- Free-free emission [Abe+21]

If dark matter (DM) self-annihilates, minihalos can significantly boost the DM annihilation signal, leaving an imprint on the CMB

$$\frac{dE}{dVdt} \bigg|_{DM} (z) = \langle \rho_{DM}^0 \rangle^2 (1+z)^6 p_{ann}$$

$$\frac{dE}{dVdt} \bigg|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \quad \text{with} \quad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}}$$

$$\left. \frac{dE}{dVdt} \right|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \qquad {\rm with} \qquad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \qquad {\rm Particle\ physics}$$

$$\frac{dE}{dVdt} \bigg|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \qquad \text{with} \qquad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \qquad \text{Particle physics}$$
 Deposition function (depends on annihilation channel)

$$\frac{dE}{dVdt} \bigg|_{\rm DM} (z) = \langle \rho_{\rm DM}^0 \rangle^2 (1+z)^6 p_{\rm ann} \qquad \text{with} \qquad p_{\rm ann} = f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \qquad \text{Particle physics}$$
 Deposition function (depends on annihilation channel)

In presence of halos, deposited energy is modified as

$$\frac{dE}{dVdt} \bigg|_{DM} (z) = (1 + B(z))\langle \rho_{DM}^0 \rangle^2 (1 + z)^6 p_{ann}$$

where
$$B(z) \equiv \frac{\langle \rho_{\rm DM}^2 \rangle}{\langle \rho_{\rm DM} \rangle^2} - 1$$
 is the cosmological boost factor

In presence of halos, deposited energy is modified as

$$\frac{dE}{dVdt} \bigg|_{DM} (z) = (1 + B(z))\langle \rho_{DM}^0 \rangle^2 (1 + z)^6 p_{ann}$$

where
$$B(z) \equiv \frac{\langle \rho_{\rm DM}^2 \rangle}{\langle \rho_{\rm DM} \rangle^2} - 1$$
 is the cosmological boost factor

How do we compute B(z)?

$$B(z) = \frac{1}{\langle \rho_{\rm m}^0 \rangle} \int M \frac{dn(M|z)}{dM} B_h(z_{\rm f}(M), z) dM$$

$$B(z) = \frac{1}{\langle \rho_{\rm m}^0 \rangle} \int M \frac{dn(M \mid z)}{dM} \ B_h(z_{\rm f}(M), z) \ dM$$
 Halo mass function Depends on $\mathcal{P}_{\mathcal{R}}(k)$

$$B(z) = \frac{1}{\langle \rho_{\rm m}^0 \rangle} \int M \frac{dn(M \mid z)}{dM} \ B_h(z_{\rm f}(M), z) \ dM$$
 Halo mass function Depends on $\mathcal{P}_{\mathcal{R}}(k)$ Depends on density profile $\rho_h(r)$

New formalism (based on ext. Press-Schechter) to account for a mixed population of halos with different profiles

(expected to arise as a result of accretion and mergers)

NFW: $\rho_{\rm h}({\bf r}) \propto {\bf r}^{-1}$

UCMHs: $\rho_h(r) \propto r^{-3/2}$

[Delos+17]

Instructions

RECIPE T

to get the constraints

Ingredients

- Modified version of ExoCLASS [Stocker+18]
- Planck legacy data

RECIPE T

to get the constraints

Ingredients

- Modified version of ExoCLASS [Stocker+18]
- Planck legacy data

Instructions

Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

RECIPE 1

to get the constraints

Ingredients

- Modified version of ExoCLASS [Stocker+18]
- Planck legacy data

Instructions

1. Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

Compute **boost factor** and the **DM** annihil. signal in the CMB (ExoCLASS)

RECIPE 1

to get the constraints

Ingredients

- Modified version of ExoCLASS [Stocker+18]
- Planck legacy data

Instructions

1. Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

- 2. Compute **boost factor** and the **DM** annihil. signal in the CMB (ExoCLASS)
- Compare prediction against Planck data

RECIPE TO

to get the constraints

Ingredients

- Modified version of ExoCLASS [Stocker+18]
- Planck legacy data

Instructions

1. Consider a **spike** at large k

$$\mathcal{P}_{\mathcal{R}}(k) = \mathcal{A}_s \left(\frac{k}{k_0}\right)^{n_s - 1} + \mathcal{A}_{\star} k_{\star} \delta(k - k_{\star})$$

- 2. Compute **boost factor** and the **DM** annihil. signal in the CMB (ExoCLASS)
- Compare prediction against Planck data

4. Obtain constraints on \mathcal{A}_{\star} vs. k_{\star} (for a fiducial param. $p_{\rm ann} \propto \langle \sigma v \rangle / m_{\rm DM}$)

Accounting for mergers leads to slightly weaker bounds

Accounting for mergers leads to slightly weaker bounds

Expected to be much more relevant for low-z probes (e.g. 21 cm)

So far, we only looked at s-wave DM annihilations

$$\langle \sigma v \rangle = \sigma_0 + \sigma_1 v^2 + \dots$$
s-wave p-wave

So far, we only looked at s-wave DM annihilations

$$\langle \sigma v \rangle = \sigma_0 + \sigma_1 v^2 + \dots$$

s-wave p-wave

p-wave terms might be non-negligible (velocity is enhanced in virialised structures). In addition, bounds on σ_1 are very weak

So far, we only looked at s-wave DM annihilations

$$\langle \sigma v \rangle = \sigma_0 + \sigma_1 v^2 + \dots$$

s-wave p-wave

p-wave terms might be non-negligible (velocity is enhanced in virialised structures). In addition, bounds on σ_1 are very weak

First calculation of p-wave boost factor in presence of UCMHs

p-wave constraints are competitive at small k

p-wave constraints are competitive at small k

Relevant for models that predict vanishing s-wave terms

Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos

- Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos
- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)

- Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos
- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)
- Interesting follow-up is to look at microlensing signatures (independent of WIMP hypothesis for DM)

- Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos
- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)
- Interesting follow-up is to look at microlensing signatures (independent of WIMP hypothesis for DM)
- Minihalos extend observable window of inflation in presence of CDM, coupling two key problems in cosmology

Robust CMB bounds on small-scale $\mathcal{P}_{\mathcal{R}}(k)$ using both s-wave and p-wave DM annihil. in minihalos

THANKS FOR YOUR ATTENTION

g.francoabellan@uva.nl

- New formalism that allows to better take into account effects of halo mergers (relevant for 21cm studies)
- Interesting follow-up is to look at microlensing signatures (independent of WIMP hypothesis for DM)
- Minihalos extend observable window of inflation in presence of CDM, coupling two key problems in cosmology

BACK-UP

Impact of UCMHs on ionisation history

Impact of UCMHs on CMB anisotropy spectra

Boost factor: comparison between formalisms

Boost factor: s-wave vs. p-wave

Constraints for different DM masses and annihil. channels

Prior range for the amplitude and location of the spike

