Probing the primordial power spectrum
with dark matter minihalos and the CMB
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Primordial fluctuations

Primordial power spectrum

Pr(k)
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Many inflation models
predict enhancements

[Clesse+15, Byrnes+19]
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Primordial Black Hole
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Moderate enhancements can produce
Ultra Compact Mini Halos (UCMHs)

[Delos+18]
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Moderate enhancements can produce
Ultra Compact Mini Halos (UCMHs)

@ Much earlier collapse (z ~ 102 - 103)

@9 Potentially much stronger constraints
on the small-scale Pz (k) than PBHs

[Delos+18]



The presence of minihalos has been probed by various methods

- Y-ray fluxes [Bringmann+11, Delos+18]
@) CMB anisotropies [Kawasaki+21]

- 21cm signal [Yang+16, Furugori+20]

@ Microlensing [Erickcek+12]

) Free-free emission [Abe+21]
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If dark matter (DM) self-annihilates, minihalos

can significantly
leaving an imprint on the CMB




@ Deposited energy into the plasma per volume and time (no halos)

dE
dVdt

(Z) — <P8M>2(1 T Z)6pann
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@ Deposited energy into the plasma per volume and time (no halos)

dE oV
TV (Z) — <p8M>2(1 + Z)6pann with  Pann =f(Z) < > <— Particle physics

m

Deposition function
(depends on annihilation channel)

Modify ionization and Alter CMB spectra

thermal history X, (z), 7,(2) C;T,TE,EE




@ In presence of halos, deposited energy is modified as

dE
=(1+B 0 V2(1 + 72)°
TV (2) = ( (Z))(,UDM> ( )" Pann
DM
2
where B(z) = (Pbm? 1 is the cosmological boost factor

(PDM)*



@ In presence of halos, deposited energy is modified as

dE
=(1+B 0 (1 + 2)°
TV (2) = ( (Z))(,UDM> ( )" Pann
DM
- <P[2)M> . .
where B(z) = o 1 is the cosmological boost factor
PDM

How do we compute B(z)?



€ Inthe framework of the halo model

1 J'M dn(M | z)

PO =y M

Bh(zf(M)a Z) dM



€ Inthe framework of the halo model

1 J'M dn(M | z)
2 dM

[

Halo mass function

B(z) =

Bh(zf(M)a Z) dM

Depends on Py, (k)



€ Inthe framework of the halo model

(Pm) J M dM B, (z¢{(M), z) dM

[ \

Halo mass function 1-halo boost

B(z) =

Depends on Py, (k) Depends on density profile 2,(7)



€ Inthe framework of the halo model

B(z) = — JMdn(MlZ) B, (z{(M).2) dM
TN )T A TR

[ \

Halo mass function

1-halo boost
Depends on Py, (k)

Depends on density profile 25(7)

@ New formalism (based on ext. Press-Schechter) to account for

a mixed population of halos with different profiles
(expected to arise as a result of accretion and mergers) NFW- pp(T) o 1

UCMHs: p,(r) o r—?

[Delos+17]
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RECIPE

to get the constraints

Ingredients

@9 Modified version of ExoCLASS

@ Planck legacy data

[Stocker+18]

Instructions

1) Consider a spike at large k

k

ns—1
—) A bk — k)
Ko

Pr(k) = A, (

71 Compute boost factor and the DM
annihil. signal in the CMB (ExoCLASS)

€= Compare prediction against Planck data

(77 Obtain constraints on A, vs. k,
(for a fiducial param. Pan, & (ov)/mpy )
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@ Accounting for mergers leads
to slightly weaker bounds

@ Expected to be much more
relevant for low-z probes
(e.g. 21 cm)
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RESULTS

@ So far, we only !o?kefj at (6v) =06y + o v2+...
s-wave DM annihilations s-wave  p-wave

@ p-wave terms might be non-negligible (velocity is enhanced in
virialised structures). In addition, bounds on o, are very weak

@ First calculation of p-wave boost factor in presence of UCMHSs
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@ Interesting follow-up is to look at microlensing signatures
(independent of WIMP hypothesis for DM)
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Impact of UCMHSs on ionisation history
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Impact of UCMHs on CMB anisotropy spectra
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Boost factor: comparison between formalisms
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Boost factor: s-wave vs. p-wave
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Constraints for different DM masses and annihil. channels
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Prior range for the amplitude and location of the spike
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