Cosmological anomalies shedding light on the dark sector

Guillermo Franco Abellán

Laboratoire Univers et Particules de Montpellier

Based on:

arXiv:2102.12498 (PRD in press)

arXiv:2008.09615 (PRD in press)

arXiv:2009.10733 PRD 103 (2020)

arXiv:2107.10291, submitted to Physics Reports

Index

I. Cosmic concordance and discordance

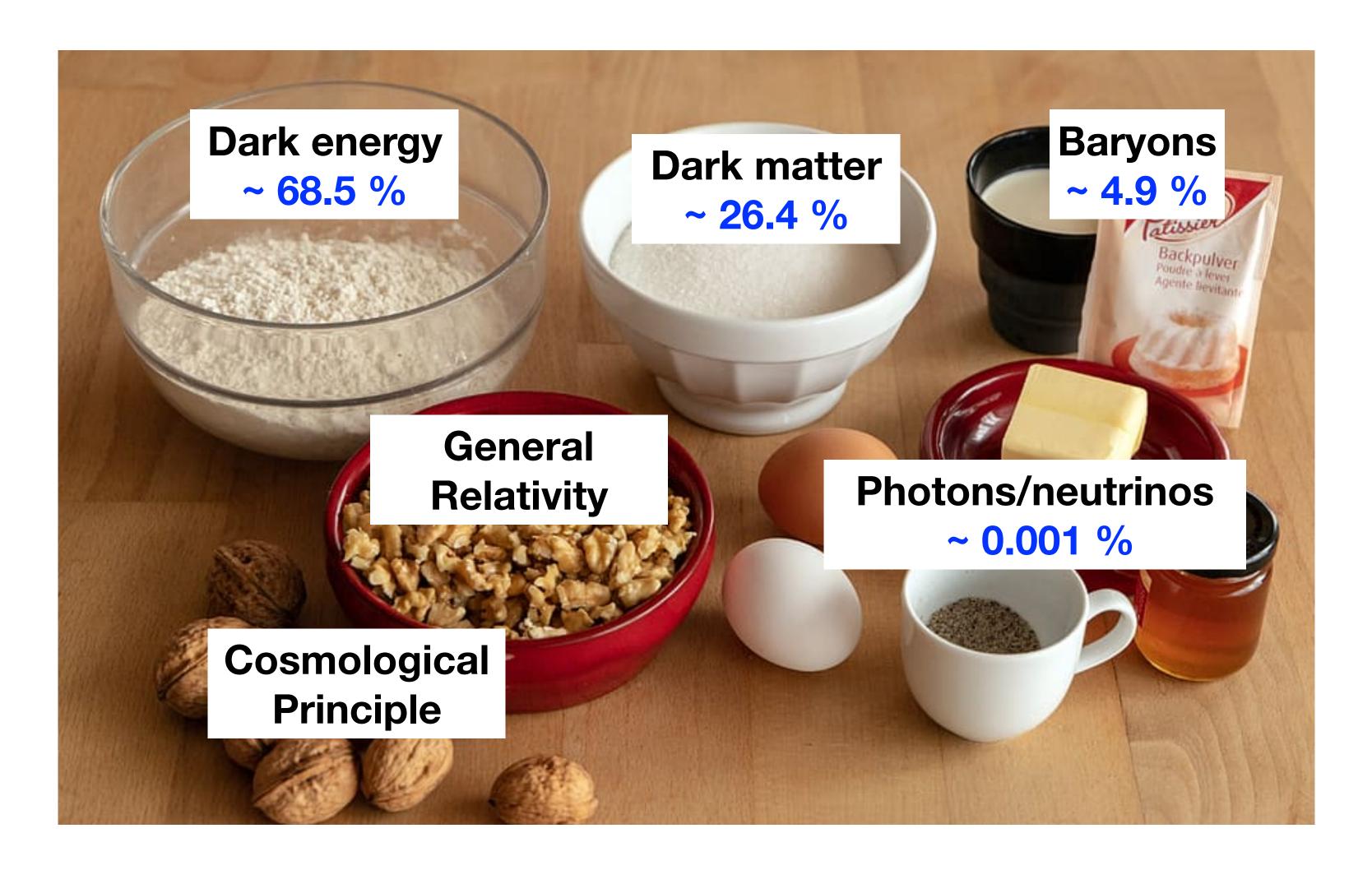
II. The Hotension vs. Early Dark Energy

III. The S₈ tension vs. Decaying Dark Matter

IV. Conclusions

I. Cosmic concordance and discordance

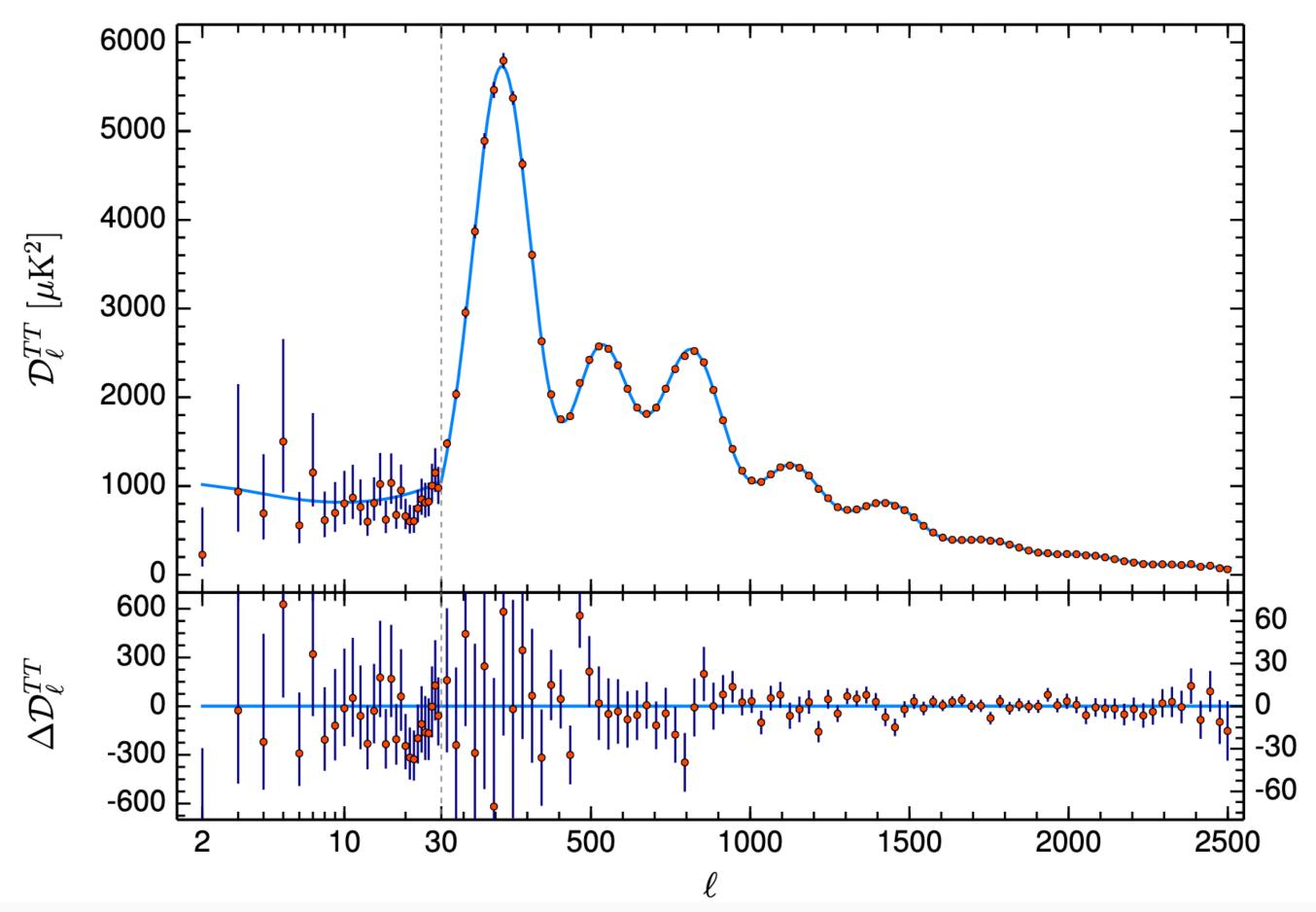
Cosmic recipe



 Λ CDM model fully specified by $\{\Omega_c, \Omega_b, H_0, A_s, n_s, \tau_{reio}\}$

The era of precision cosmology

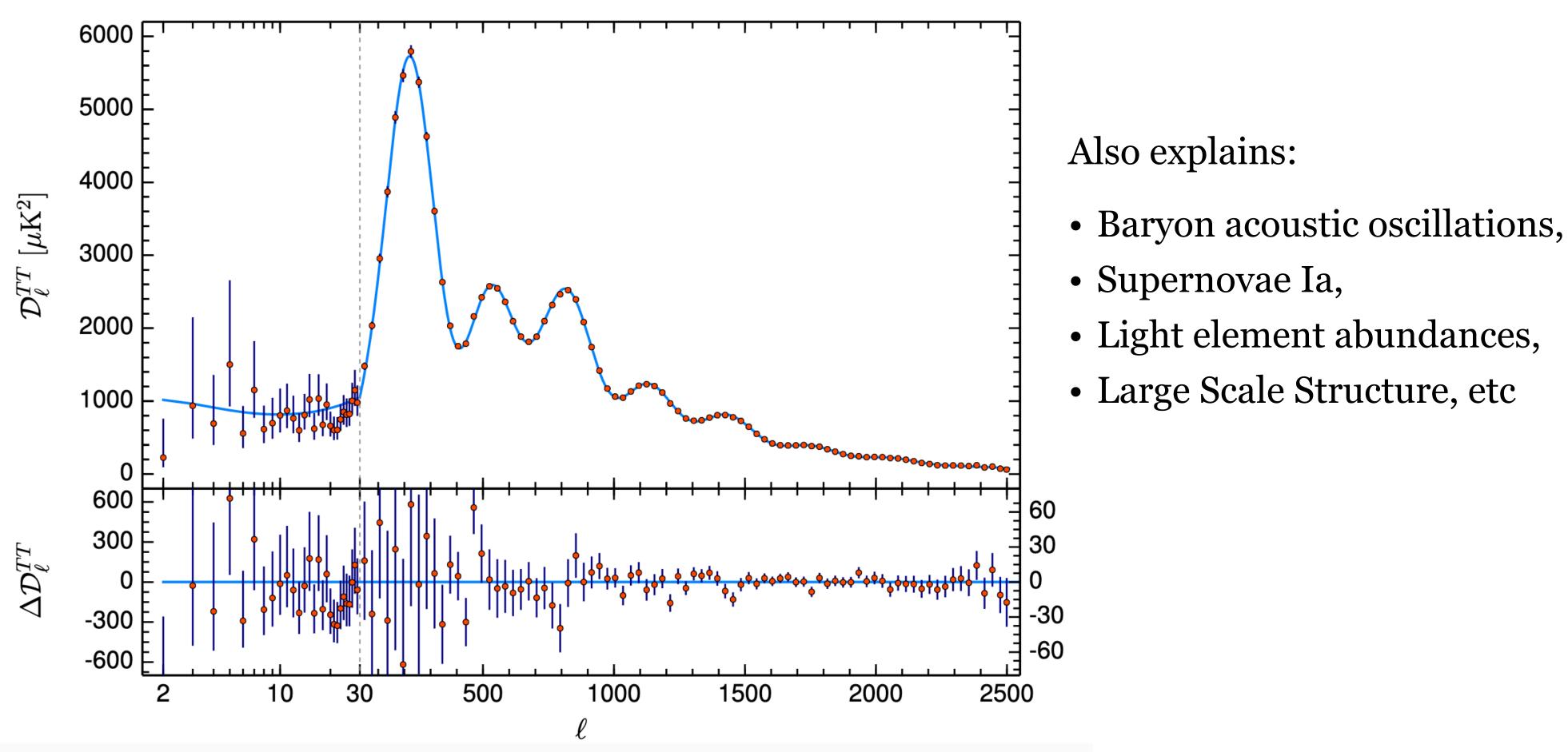
ΛCDM gives excellent fit to CMB anisotropy spectra



Planck 2018, 1807.06209

The era of precision cosmology

ΛCDM gives excellent fit to CMB anisotropy spectra



Planck 2018, 1807.06209

Challenges to the \CDM paradigm

1. What is dark matter? And dark energy?

- Are they made of particles?
- Are they made of single species?
- How are they produced?
- What is their **lifetime**?
- And their mass?

Challenges to the \CDM paradigm

2. Several discrepancies emerged in recent years

- S₈ with weak-lensing data KiDS-1000 2007.15632
- H₀ with local measurements
 Riess++ 2012.08534

Challenges to the \CDM paradigm

2. Several discrepancies emerged in recent years

- S₈ with weak-lensing data KiDS-1000 2007.15632
- H₀ with local measurements
 Riess++ 2012.08534

Unaccounted systematics?

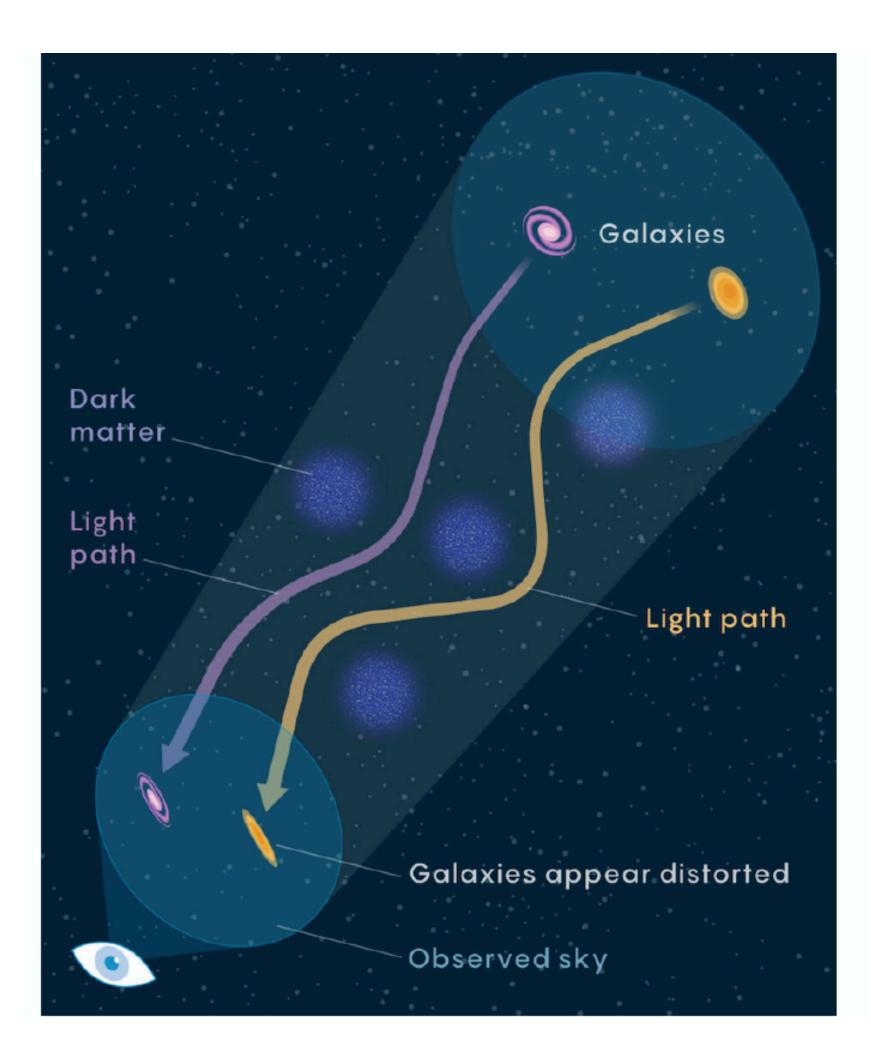
- Less exotic explanation
- Difficult to account for all discrepancies

Physics beyond Λ CDM?

- Reveal properties about the dark sector
- Very challenging X

The S₈ tension

Weak-lensing surveys are mainly sensible to $S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3}$



where
$$\sigma_8 = \int P_m(k, z = 0)W_R^2(k)dlnk$$

KiDS+BOSS+2dfLenS*:

$$S_8 = 0.766^{+0.020}_{-0.014}$$

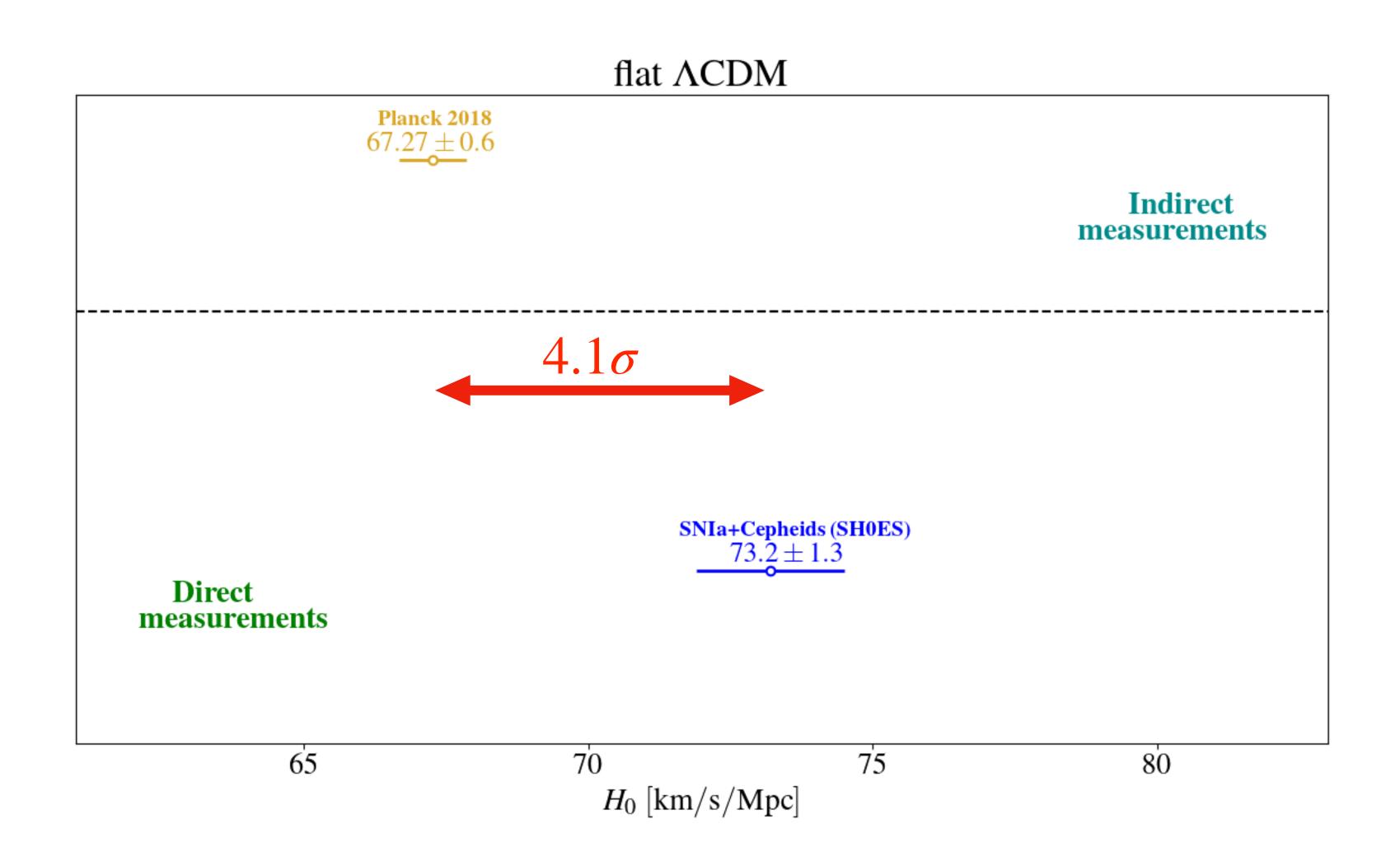
Planck ($under \Lambda CDM$):

$$S_8 = 0.830 \pm 0.013$$

$$\rightarrow \sim 2 - 3\sigma$$
 tension

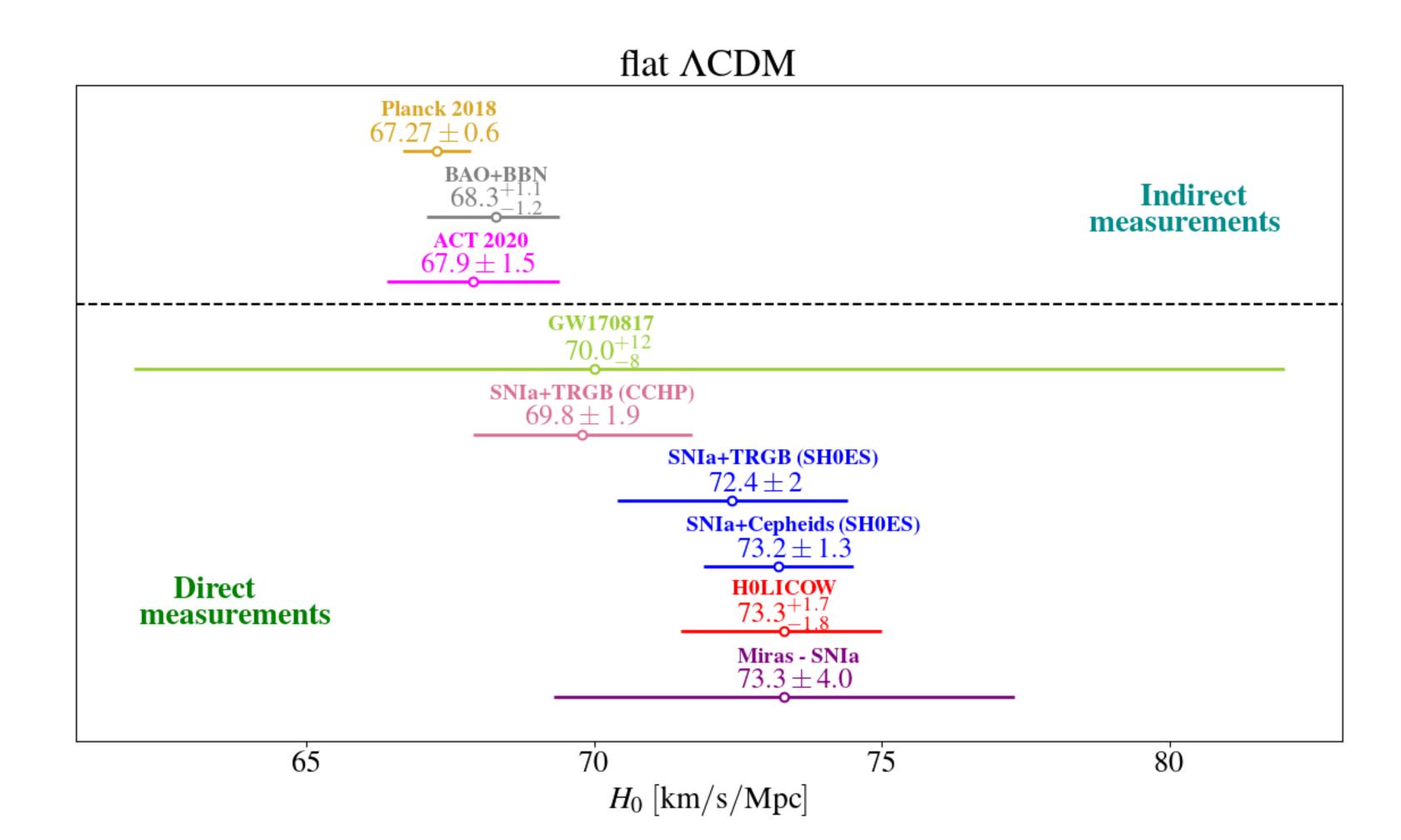
The Ho tension

Planck ($under \Lambda CDM$) and SHoES measurements are in 4.1 σ tension

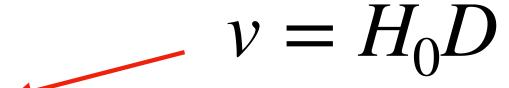


The Hotension

Planck (*under ΛCDM*) and SHoES measurements are in **4.1σ tension** High- and low-redshift probes are typically discrepant



How does SH0ES determine H₀?



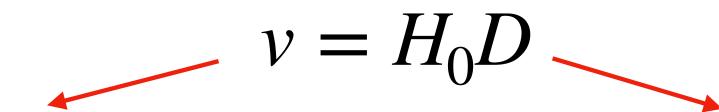
From spectrometry

$$1 + z = \frac{\lambda_{obs}}{\lambda_{emit}}$$

Distance to some standard candle, e.g. supernovae Ia

$$Flux = \frac{L}{4\pi D_L^2}$$

How does SH0ES determine H₀?



From spectrometry

$$1 + z = \frac{\lambda_{obs}}{\lambda_{emit}}$$

Distance to some standard candle, e.g. supernovae Ia

$$Flux = \frac{L}{4\pi D_L^2}$$

Focus on small z*, for which distances are approx. model-independent

$$D_{L} = (1+z) \int_{0}^{z} \frac{cdz'}{H(z')} \xrightarrow{z \ll 1} czH_{0}^{-1} \simeq vH_{0}^{-1}$$

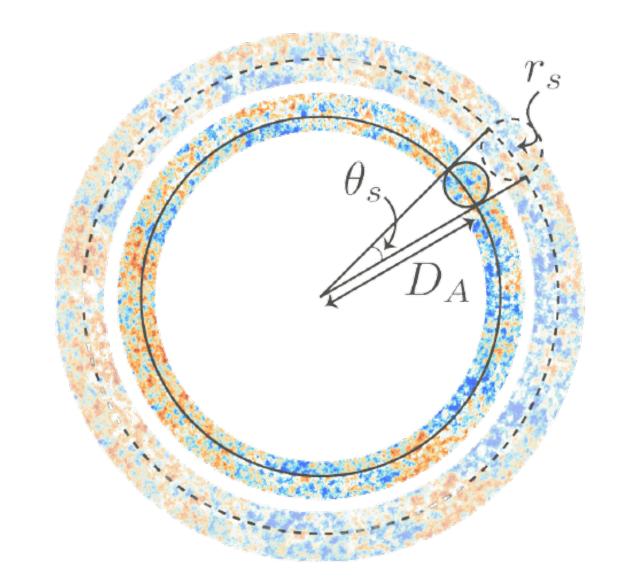
where
$$H^2(z) = \frac{8\pi G}{3} \sum_{i} \rho_i(z)$$

^{*}But not too small, to make sure peculiar velocities are negligible

How does Planck determine H₀?

Angular size of the sound horizon is measured at the 0.04 % precision

$$\theta_{s} = \frac{r_{s}(z_{\text{rec}})}{D_{A}(z_{\text{rec}})} = \frac{\int_{0}^{\tau_{\text{rec}}} c_{s}(\tau) d\tau}{\int_{\tau_{\text{rec}}}^{\tau_{0}} c d\tau}$$



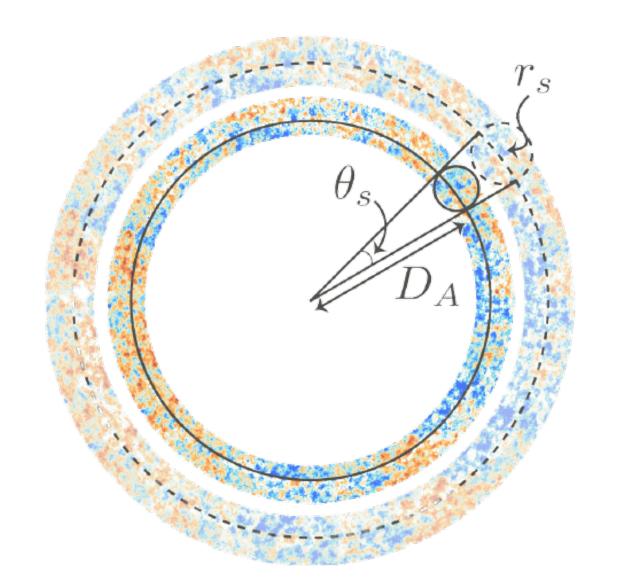
T. Smith

How does Planck determine H₀?

Angular size of the sound horizon is measured at the 0.04 % precision

$$\theta_{s} = \frac{r_{s}(z_{\text{rec}})}{D_{A}(z_{\text{rec}})} = \frac{\int_{0}^{\tau_{\text{rec}}} c_{s}(\tau) d\tau}{\int_{\tau_{\text{rec}}}^{\tau_{0}} c d\tau} = \frac{\int_{\infty}^{z_{\text{rec}}} c_{s}(z) dz / \sqrt{\rho_{\text{tot}}(z)}}{\int_{0}^{z_{\text{rec}}} c dz / \sqrt{\rho_{\text{tot}}(z)}}$$

with
$$D_A \propto 1/H_0 = 1/\sqrt{\rho_{tot}(0)}$$

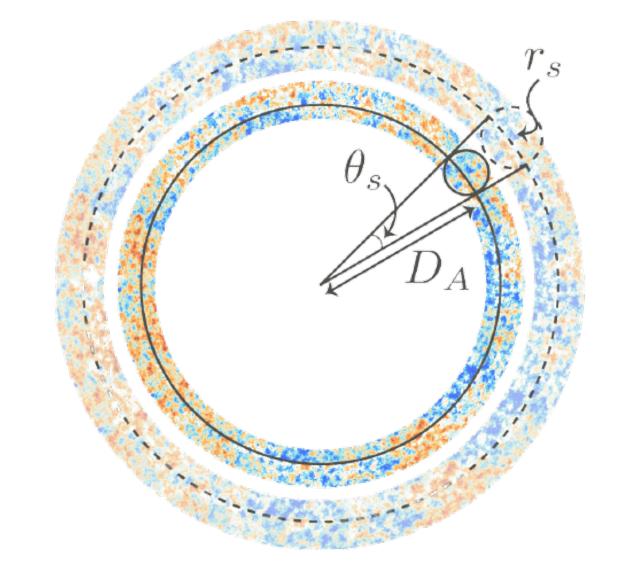


T. Smith

How does Planck determine H₀?

Angular size of the sound horizon is measured at the 0.04 % precision

$$\theta_{s} = \frac{r_{s}(z_{\text{rec}})}{D_{A}(z_{\text{rec}})} = \frac{\int_{0}^{\tau_{\text{rec}}} c_{s}(\tau) d\tau}{\int_{\tau_{\text{rec}}}^{\tau_{0}} c d\tau} = \frac{\int_{\infty}^{z_{\text{rec}}} c_{s}(z) dz / \sqrt{\rho_{\text{tot}}(z)}}{\int_{0}^{z_{\text{rec}}} c dz / \sqrt{\rho_{\text{tot}}(z)}}$$



with $D_A \propto 1/H_0 = 1/\sqrt{\rho_{tot}(0)}$

T. Smith

Early-time solutions

Decrease $r_s(z_{rec})$ at fixed θ_s to decrease $D_A(z_{rec})$ and increase H_0

 $Ex: \Delta N_{eff} > 0$

Late-time solutions

 $r_s(z_{\text{rec}})$ and $D_A(z_{\text{rec}})$ are fixed, but $D_A(z < z_{\text{rec}})$ is changed to allow higher H_0

Ex : w < -1

What is needed to resolve the H₀ tension?

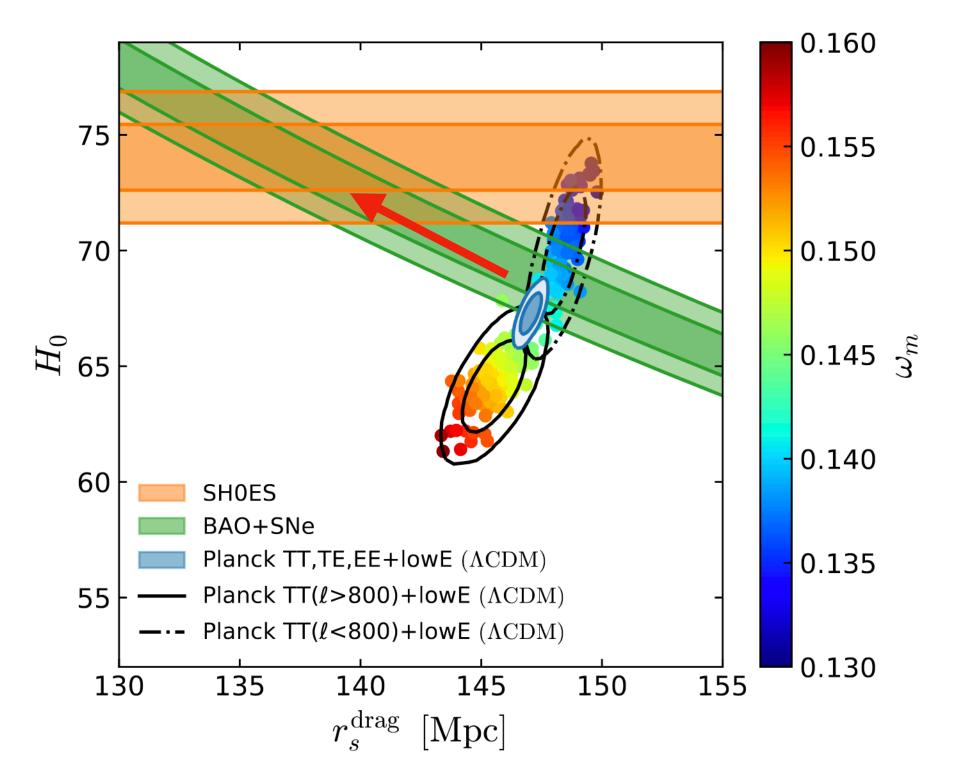
- Late-time solutions appear to be almost excluded by BAO and SNIa data

 Poulin++ 1803.02474
- For early-time solutions, one seems to require a 7 % decrease in $r_s(z_*)$

What is needed to resolve the H₀ tension?

- Late-time solutions appear to be almost excluded by BAO and SNIa data

 Poulin++ 1803.02474
- For early-time solutions, one seems to require a 7 % decrease in $r_s(z_*)$



Given r_s , obtain D_A using BAO data

$$\theta_d(z)^{\perp} = \frac{r_s(z_{\text{drag}})}{D_A(z)}, \quad \theta_d(z)^{\parallel} = r_s(z_{\text{drag}})H(z)$$

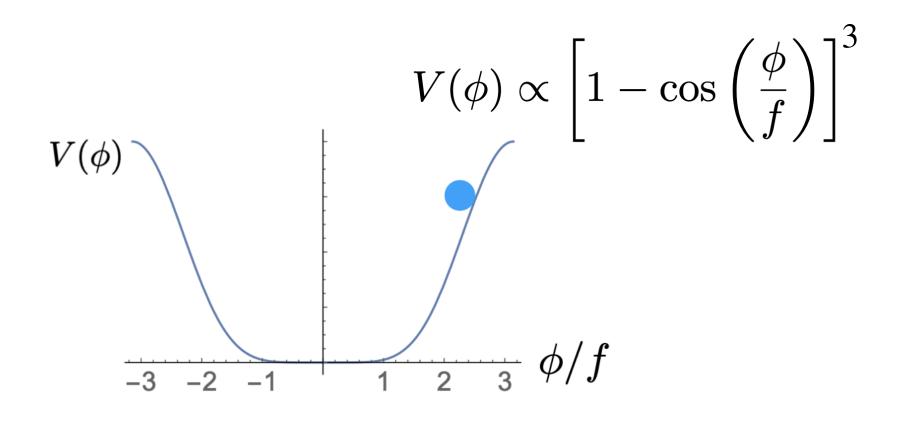
$$D_L(z) = D_A(z)(1+z)^2$$

Obtain Ho from calibration of SNIa

$$m(z) = 5Log_{10}D_L(z) + const$$

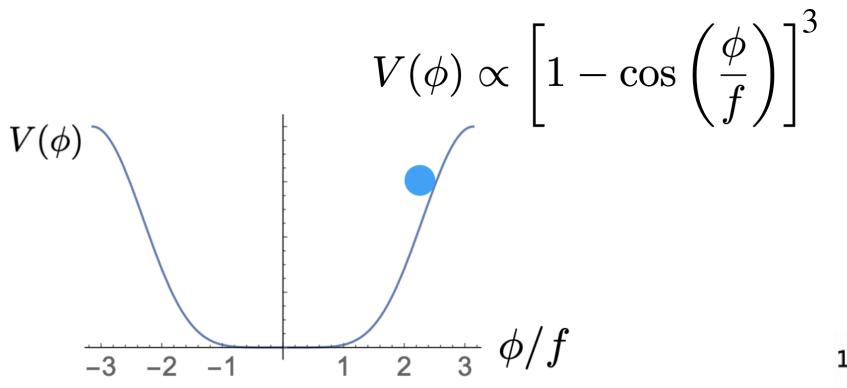
II. The Hotension vs. Early Dark Energy

In collaboration with Riccardo Murgia and Vivian Poulin



Scalar field initially frozen, then dilutes away equal or faster than radiation

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
+ perturbed linear eqs.



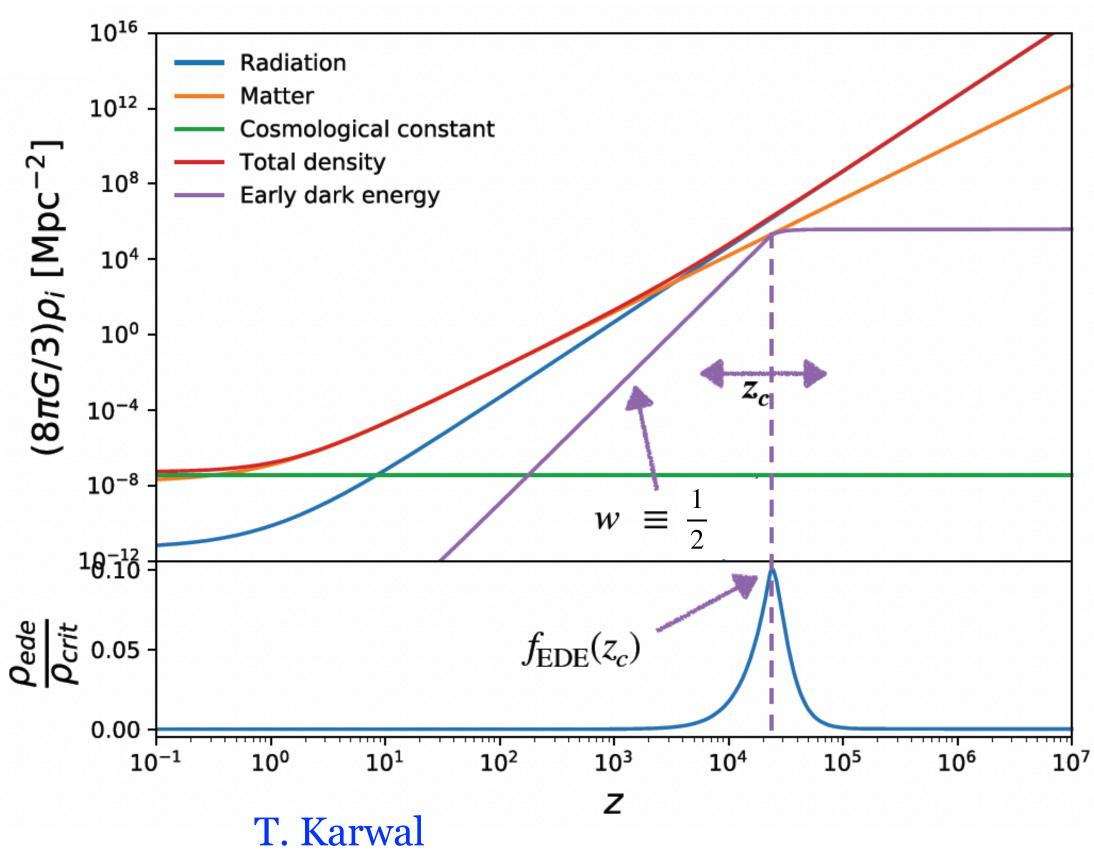
3 parameter EDE model (3pEDE):

$$\{f_{\text{EDE}}(z_c), z_c, \phi_i\}$$

Scalar field initially frozen, then dilutes away equal or faster than radiation

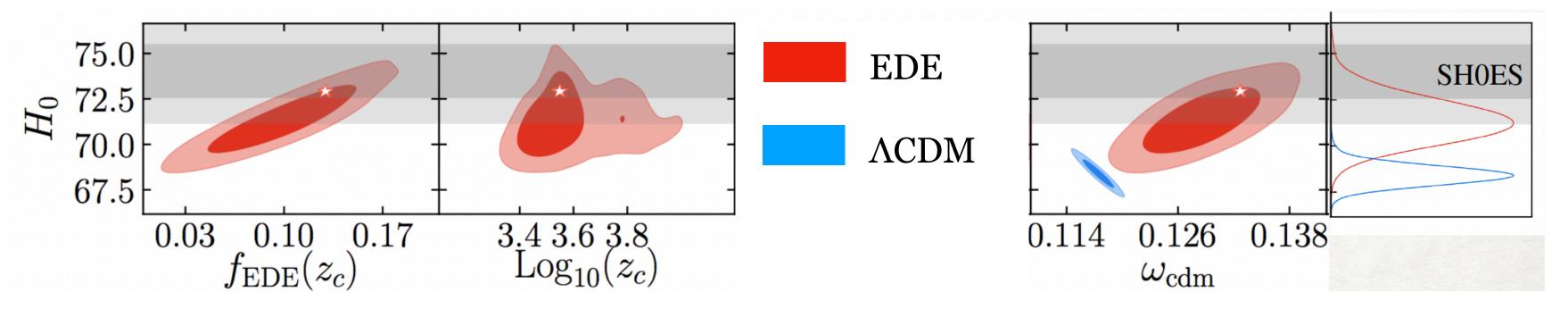
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

+ perturbed linear eqs.



Early Dark Energy can resolve the H_o tension if $f_{\rm EDE}(z_c) \sim 10\%$ for $z_c \sim z_{\rm eq}$

Planck+ BAO+ SNIa+ SHoES analysis

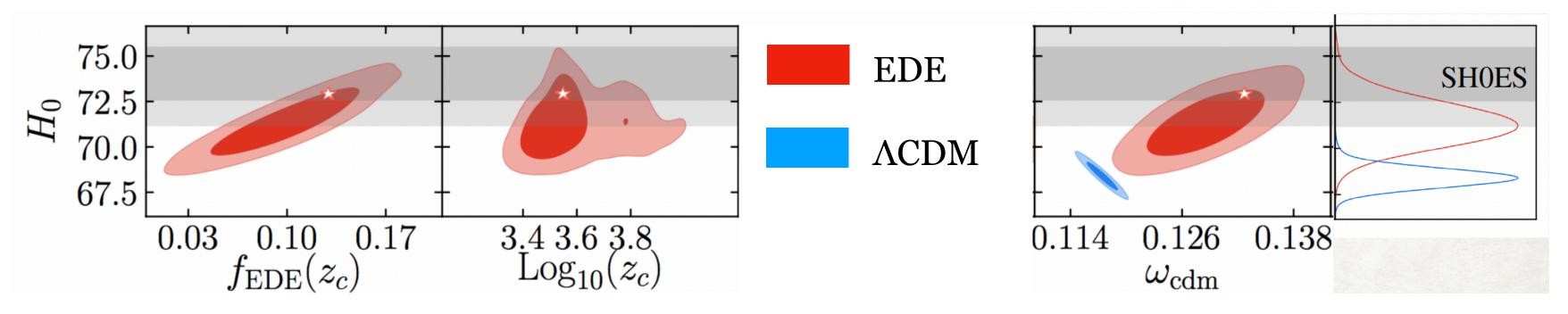


Poulin++ 1811.04083 Smit

Smith++ 1908.06995

Early Dark Energy can resolve the H_o tension if $f_{EDE}(z_c) \sim 10\%$ for $z_c \sim z_{eq}$

Planck+ BAO+ SNIa+ SHoES analysis



Poulin++ 1811.04083

Smith++ 1908.06995

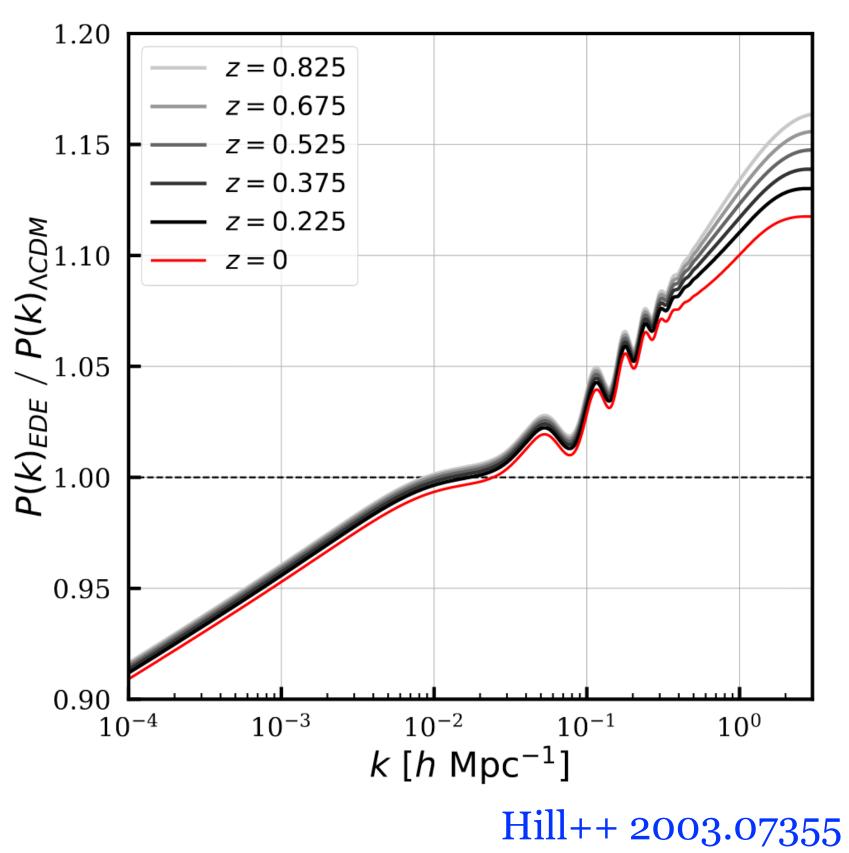
Some caveats

- 1. Very fine tuned?
 - Proposed connexions of EDE with neutrino sector and present DE

 Sakstein++ 1911.11760 Freese++ 2102.13655
- 2. Increased value of $\omega_{\rm cdm} = \Omega_{\rm cdm} h^2$, increases value of S_8 Jedamzik++ 2010.04158.

Is EDE solution ruled out?

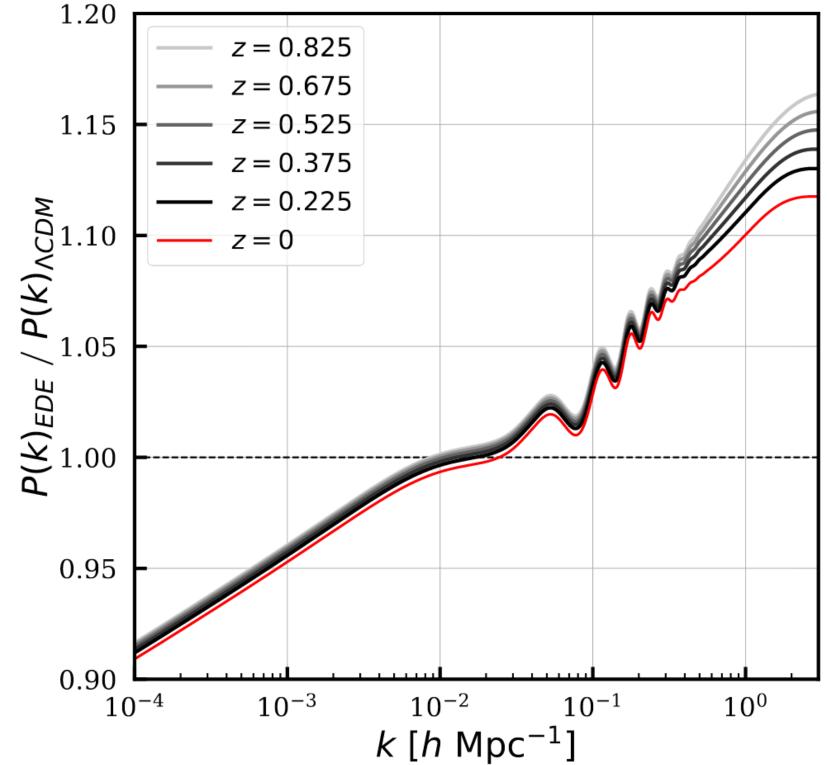
EDE solution increases power at small k (with a corresponding increase in S_8), rising mild tension with Large Scale Structure (LSS) data



Is EDE solution ruled out?

EDE solution increases power at small k (with a corresponding increase in S_8), rising mild tension with Large Scale Structure (LSS) data

When LSS data is added to analysis, EDE detection is reduced from 3σ to 2σ



In addition, EDE is not detected from

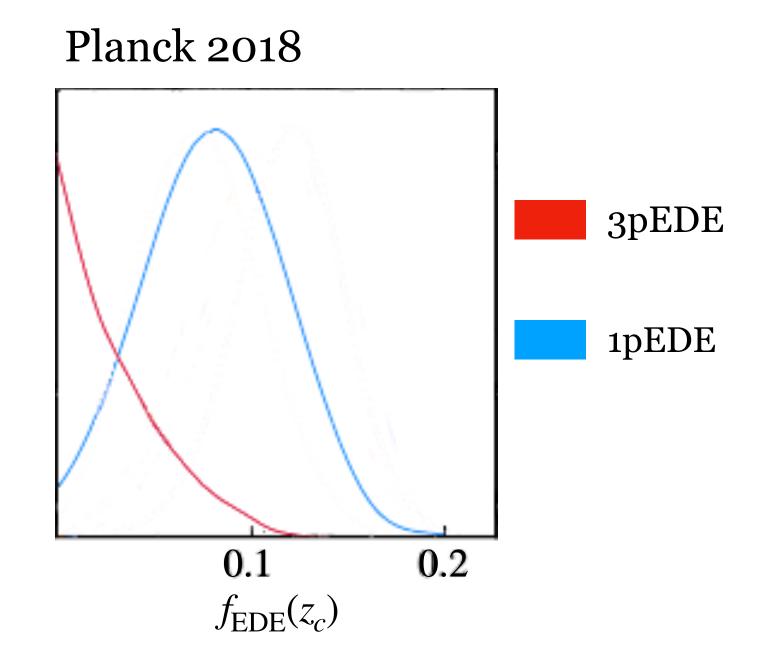
Planck data alone

D'amico++ 2006.12420 Ivanov++ 2006.11235

Hill++ 2003.07355

1. Why EDE is not detected from Planck alone?

 χ^2 degeneracy in Planck between Λ CDM and EDE: For $f_{\rm EDE} \lesssim 4$ %, parameters z_c and ϕ_i become irrelevant, so posteriors are naturally weighted towards Λ CDM

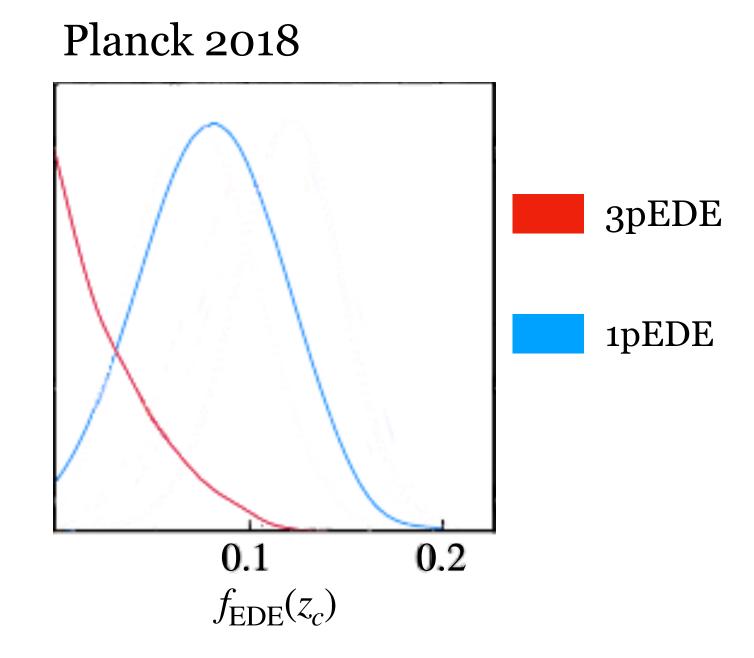


1. Why EDE is not detected from Planck alone?

 χ^2 degeneracy in Planck between Λ CDM and EDE: For $f_{\rm EDE}\lesssim 4$ %, parameters z_c and $\phi_{\rm i}$ become irrelevant, so posteriors are naturally weighted towards Λ CDM

To avoid this Bayesian volume effect, consider a **1 parameter EDE model (1pEDE):**

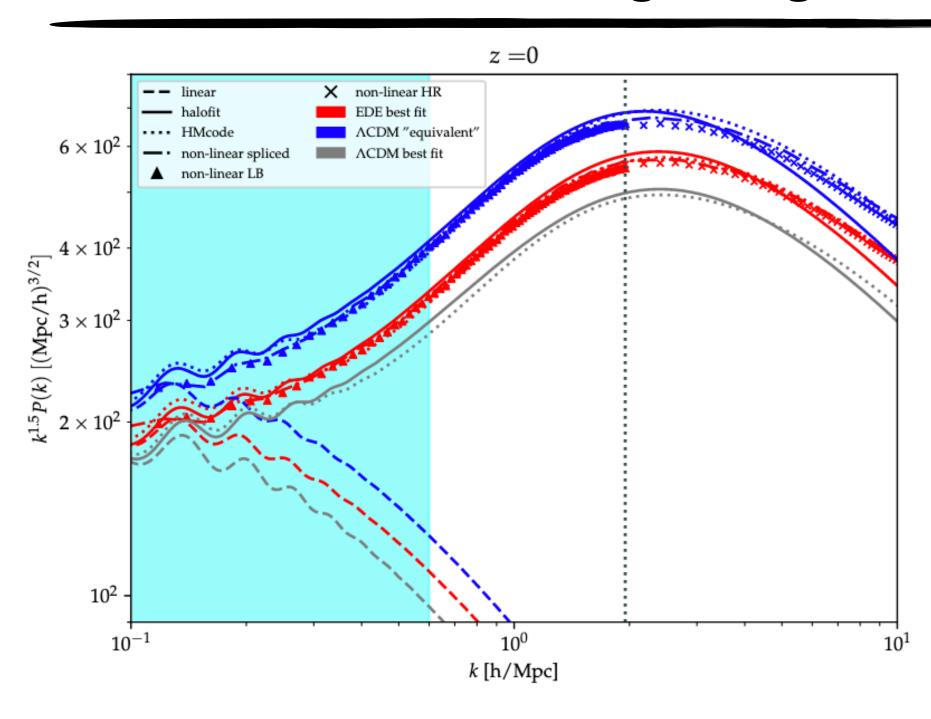
Fix z_c and ϕ_i and let f_{EDE} free to vary



Within 1pEDE, we get a 20 detection of EDE from Planck data alone

$$f_{\text{EDE}} = 0.08 \pm 0.04$$
 $H_0 = 70 \pm 1.5 \text{ km/s/Mpc}$

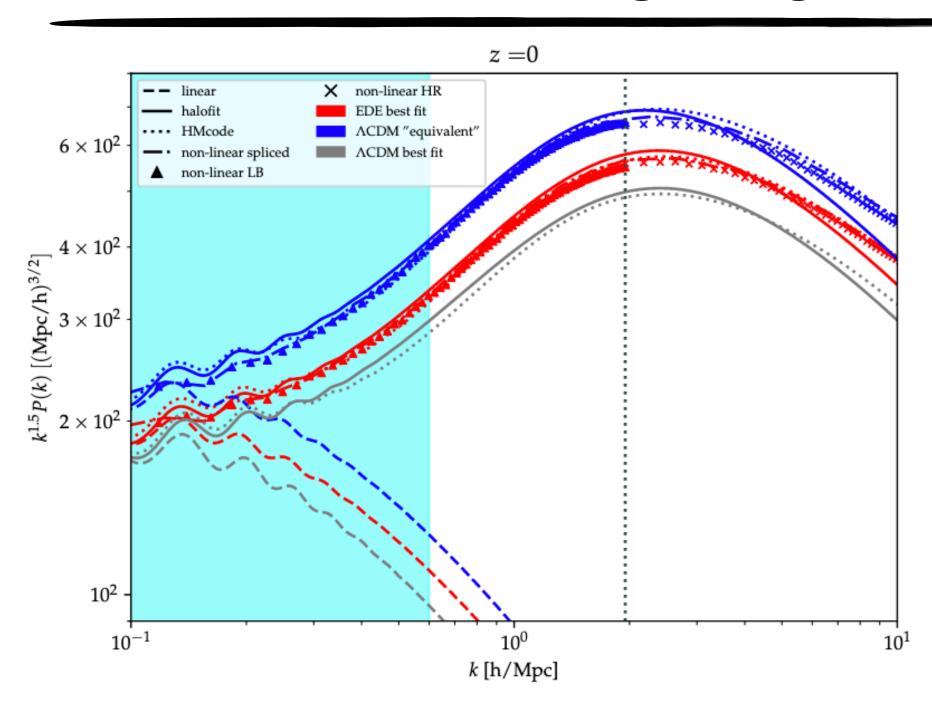
2. Is LSS data constraining enough to rule out EDE?



EDE non-linear P(k)* from halofit agrees well with results from N-body simulations

^{*}Intrinsic effect of EDE is a power suppression, but the shift of the Λ CDM params. leads to an enhancement 19

2. Is LSS data constraining enough to rule out EDE?



EDE non-linear P(k)* from halofit agrees well with results from N-body simulations

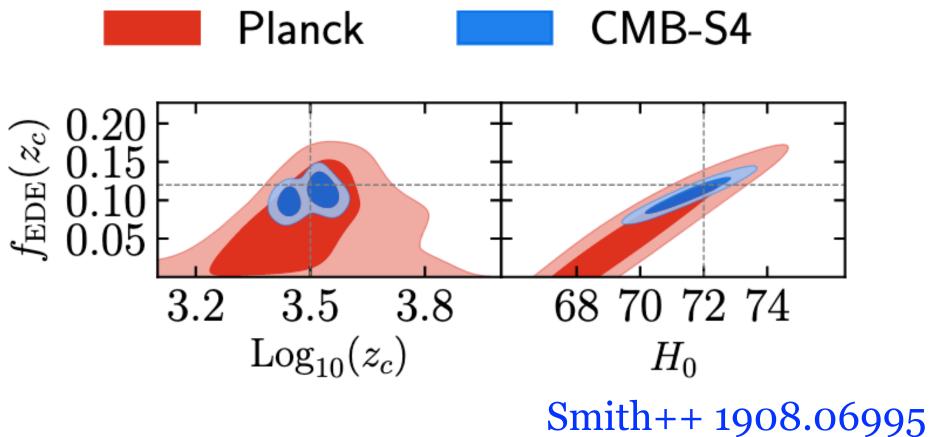
1pEDE tested against Planck+BAO+SNIa+SHoEs and WL data from KiDS/Viking+DES: S_8 tension persists, but fit is not significantly degraded wrt Λ CDM, and solution to the Ho tension survives Murgia, GFA, Poulin 2107.10291

$$f_{\text{EDE}} = 0.09^{+0.03}_{-0.02}$$
 $H_0 = 71.3 \pm 0.9 \text{ km/s/Mpc}$

*Intrinsic effect of EDE is a power suppression, but the shift of the Λ CDM params. leads to an enhancement 19

Prospects for Early Dark Energy

Future CMB experiments (i.e. CMB-S4) will be able to unambiguously detect EDE

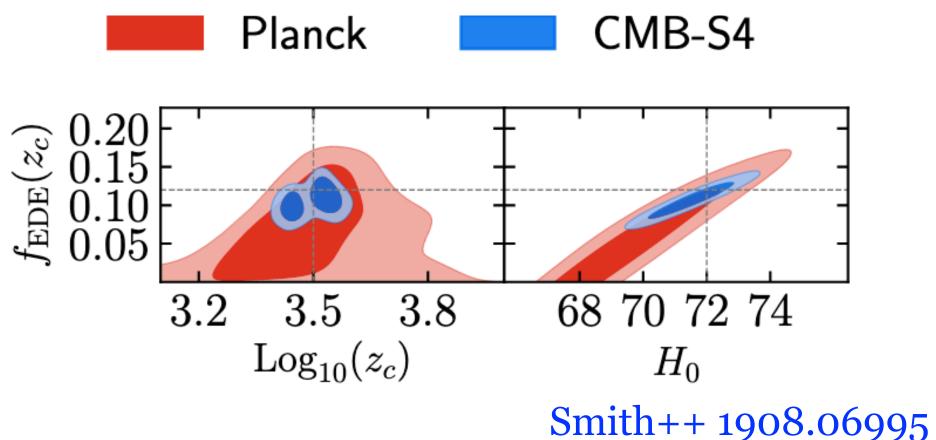


Other current CMB experiments like ACT are already showing a 3σ detection of EDE!

Hill++ 2109.04451 Poulin++ 2109.06229

Prospects for Early Dark Energy

Future CMB experiments (i.e. CMB-S4) will be able to unambiguously detect EDE



Other current CMB experiments like ACT are already showing a 3 σ detection of EDE!

Hill++ 2109.04451 Poulin++ 2109.06229

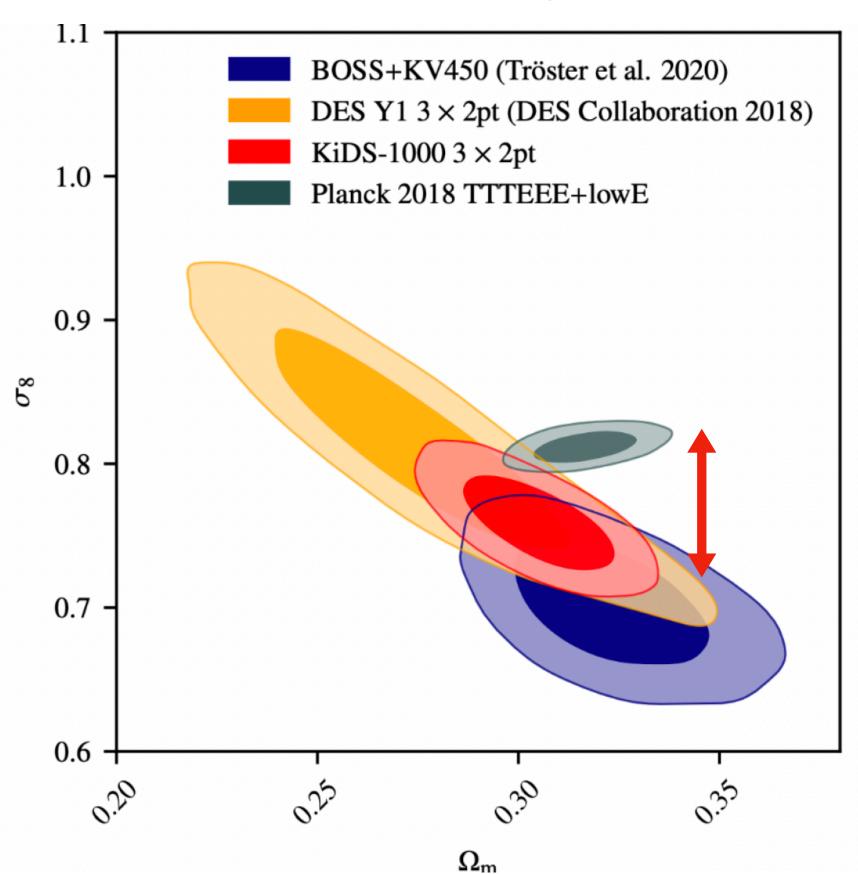
Is there any model that could explain the S_8 anomaly?

III. The S₈ tension vs. Decaying Dark Matter

In collaboration with Riccardo Murgia, Vivian Poulin and Julien Lavalle

What is needed to resolve the S₈ tension?

Di Valentino++ 2008.11285



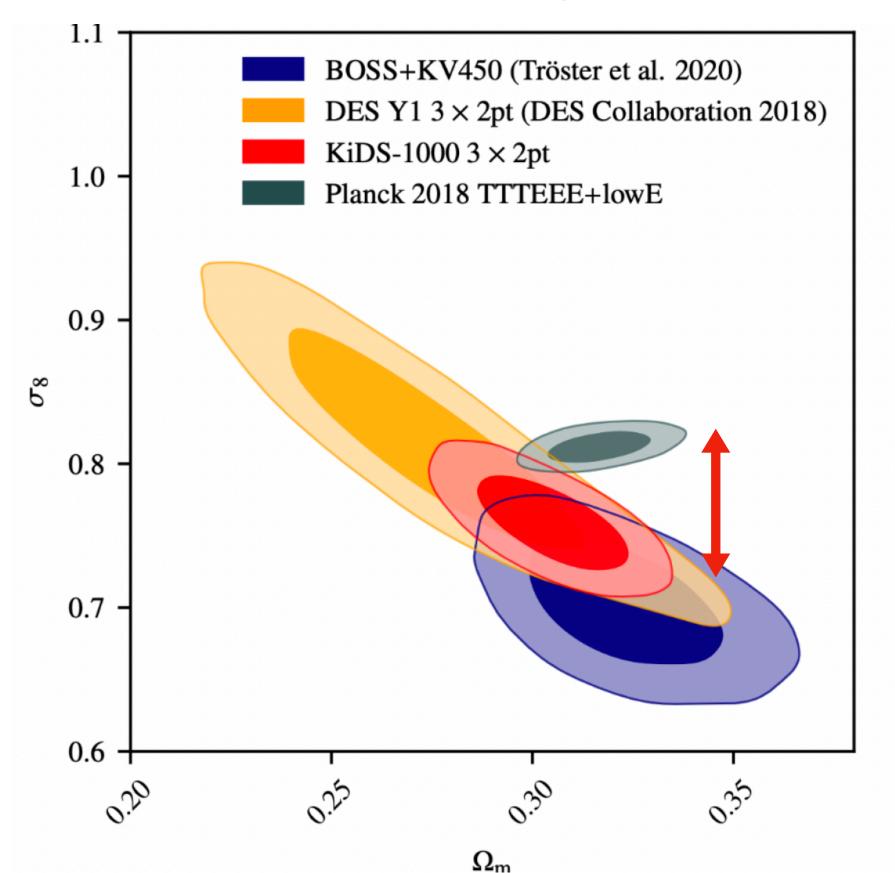
$$S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3}$$

 Ω_m should be left unchanged

$$\sigma_8 = \int P_m(k, z = 0) W_R^2(k) d\ln k$$

What is needed to resolve the S₈ tension?

Di Valentino++ 2008.11285

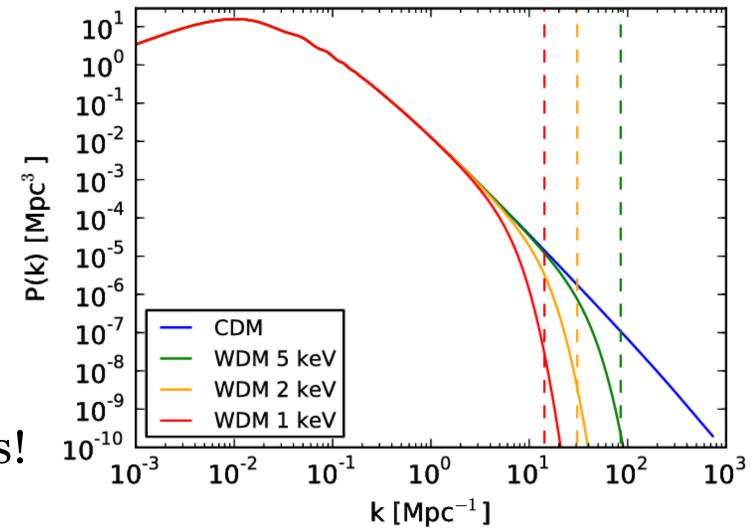


$$S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3}$$

 Ω_m should be left unchanged

$$\sigma_8 = \int P_m(k, z = 0) W_R^2(k) d\ln k$$

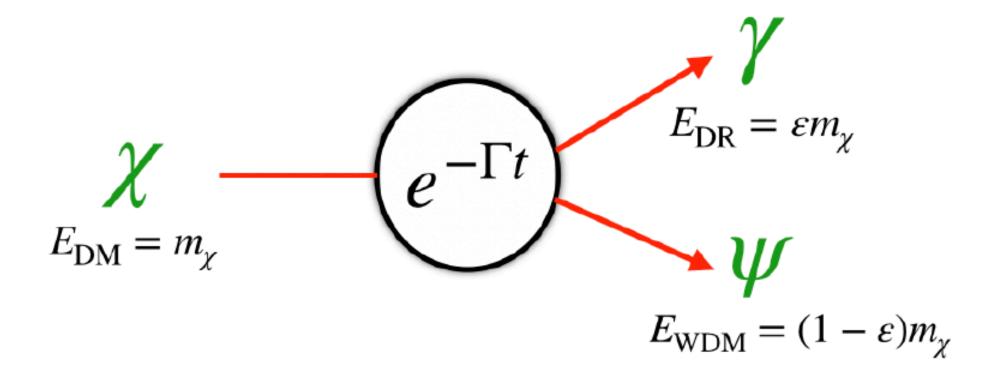
Need to suppress power at scales $k \sim 0.1 - 1 \ h/\text{Mpc}$



Ex: Warm Dark Matter
Very constrained by many probes!

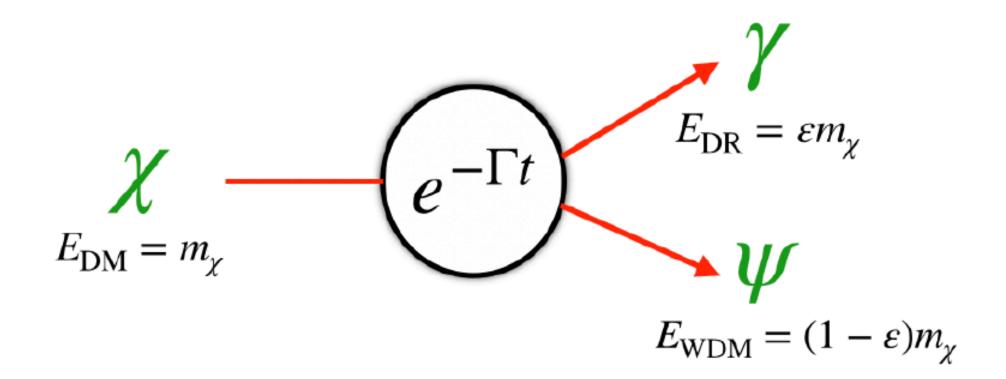
2-body Dark Matter decay

We explore DM decays to massless (Dark Radiation) and massive (Warm Dark Matter) particles, $\chi(\mathrm{DM}) \to \gamma(\mathrm{DR}) + \psi(\mathrm{WDM})$



2-body Dark Matter decay

We explore DM decays to massless (Dark Radiation) and massive (Warm Dark Matter) particles, $\chi(\text{DM}) \rightarrow \gamma(\text{DR}) + \psi(\text{WDM})$



The model is fully specified by:

$$\{\Gamma,\,\varepsilon\} \ \ \text{where} \ \ \varepsilon = \frac{1}{2} \left(1 - \frac{m_\psi^2}{m_\chi^2}\right) \left\{ \begin{array}{l} = 0 \ \text{for } \Lambda \text{CDM} \\ = 1/2 \ \text{for DM} \to \text{DR} \end{array} \right.$$

2-body Dark Matter decay

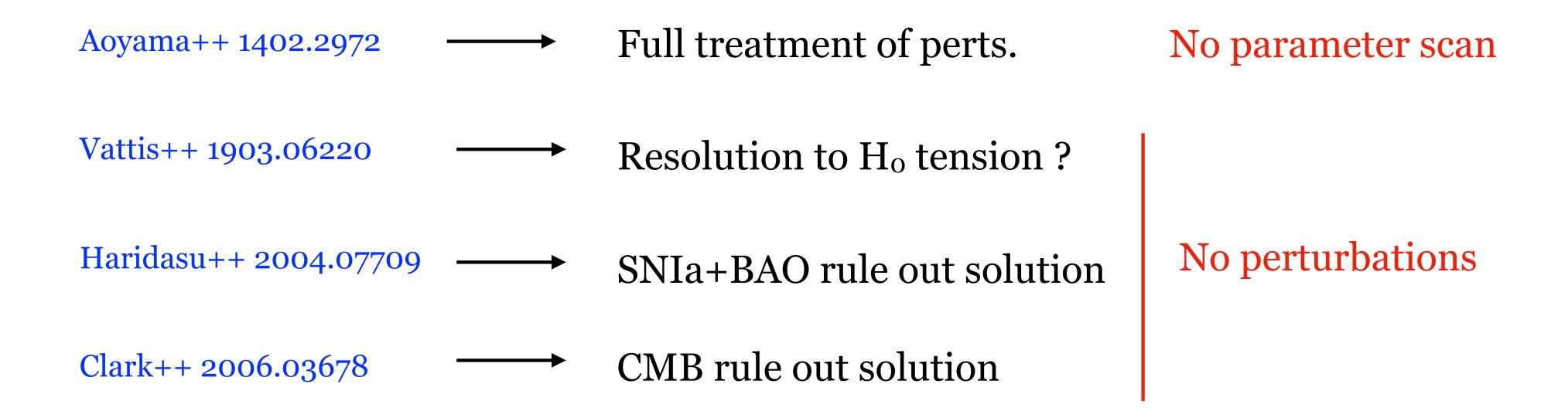
Aoyama++ 1402.2972 \longrightarrow Full treatment of perts. No parameter scan

Vattis++ 1903.06220 \longrightarrow Resolution to Ho tension?

Haridasu++ 2004.07709 \longrightarrow SNIa+BAO rule out solution

Clark++ 2006.03678 \longrightarrow CMB rule out solution

2-body Dark Matter decay



Our goal: Perform parameter scan by including full treatment of linear perts, in order to assess the impact on the S_8 tension

Evolution of perturbations: full treatment

• Effects on $P_m(k)$ and C_ℓ ? Track linear perts. for the particles species involved in the decay: δ_i , θ_i and σ_i for i = dm, dr, wdm

• Boltzmann hierarchy of eqs. Dictate the evolution of the p.s.d. multipoles $\Delta f_{\ell}(q,k,\tau)$

- ◆ DM and DR treatments are easy, momentum d.o.f. are integrated out
- ♦ For WDM, one needs to follow the evolution of the full p.s.d. Computationally expensive \longrightarrow $\mathcal{O}(10^8)$ ODEs to solve!

Evolution of perturbations: fluid equations

New fluid eqs.*, based on previous approximation for massive neutrinos

Lesgourgues & Tram, 1104.2935

$$\dot{\delta}_{\text{wdm}} = -3aH(c_{\text{syn}}^2 - w)\delta_{\text{wdm}} - (1+w)\left(\theta_{\text{wdm}} + \frac{\dot{h}}{2}\right) + a\Gamma(1-\varepsilon)\frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}}(\delta_{\text{dm}} - \delta_{\text{wdm}})$$

$$\dot{\theta}_{\text{wdm}} = -aH(1 - 3c_a^2)\theta_{\text{wdm}} + \frac{c_{\text{syn}}^2}{1 + w}k^2\delta_{\text{wdm}} - k^2\sigma_{\text{wdm}} - a\Gamma(1 - \varepsilon)\frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}}\frac{1 + c_a^2}{1 + w}\theta_{\text{wdm}}$$

^{*}Implemented in modified version of public Boltzmann solver CLASS

Evolution of perturbations: fluid equations

New fluid eqs.*, based on previous approximation for massive neutrinos

Lesgourgues & Tram, 1104.2935

$$\dot{\delta}_{\text{wdm}} = -3aH(c_{\text{syn}}^2 - w)\delta_{\text{wdm}} - (1+w)\left(\theta_{\text{wdm}} + \frac{\dot{h}}{2}\right) + a\Gamma(1-\varepsilon)\frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}}(\delta_{\text{dm}} - \delta_{\text{wdm}})$$

$$\dot{\theta}_{\text{wdm}} = -aH(1 - 3c_a^2)\theta_{\text{wdm}} + \frac{c_{\text{syn}}^2}{1 + w}k^2\delta_{\text{wdm}} - k^2\sigma_{\text{wdm}} - a\Gamma(1 - \varepsilon)\frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}}\frac{1 + c_a^2}{1 + w}\theta_{\text{wdm}}$$

where

$$c_a^2(\tau) = w \left(5 - \frac{\mathfrak{p}_{\text{wdm}}}{\bar{P}_{\text{wdm}}} - \frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}} \frac{\Gamma}{3wH} \frac{\varepsilon^2}{1 - \varepsilon} \right) \left[3(1 + w) - \frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}} \frac{\Gamma}{H} (1 - \varepsilon) \right]^{-1}$$

and

$$c_{\text{syn}}^2(k,\tau) = c_a^2(\tau) \left[1 + (1 - 2\varepsilon)T(k/k_{\text{fs}}) \right]$$

^{*}Implemented in modified version of public Boltzmann solver CLASS

Evolution of perturbations: fluid equations

New fluid eqs.*, based on previous approximation for massive neutrinos

Lesgourgues & Tram, 1104.2935

$$\dot{\delta}_{\text{wdm}} = -3aH(c_{\text{syn}}^2 - w)\delta_{\text{wdm}} - (1+w)\left(\theta_{\text{wdm}} + \frac{\dot{h}}{2}\right) + a\Gamma(1-\varepsilon)\frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}}(\delta_{\text{dm}} - \delta_{\text{wdm}})$$

$$\dot{\theta}_{\text{wdm}} = -aH(1 - 3c_a^2)\theta_{\text{wdm}} + \frac{c_{\text{syn}}^2}{1 + w}k^2\delta_{\text{wdm}} - k^2\sigma_{\text{wdm}} - a\Gamma(1 - \varepsilon)\frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}}\frac{1 + c_a^2}{1 + w}\theta_{\text{wdm}}$$

where

$$c_a^2(\tau) = w \left(5 - \frac{\mathfrak{p}_{\text{wdm}}}{\bar{P}_{\text{wdm}}} - \frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}} \frac{\Gamma}{3wH} \frac{\varepsilon^2}{1 - \varepsilon} \right) \left[3(1 + w) - \frac{\bar{\rho}_{\text{dm}}}{\bar{\rho}_{\text{wdm}}} \frac{\Gamma}{H} (1 - \varepsilon) \right]^{-1}$$

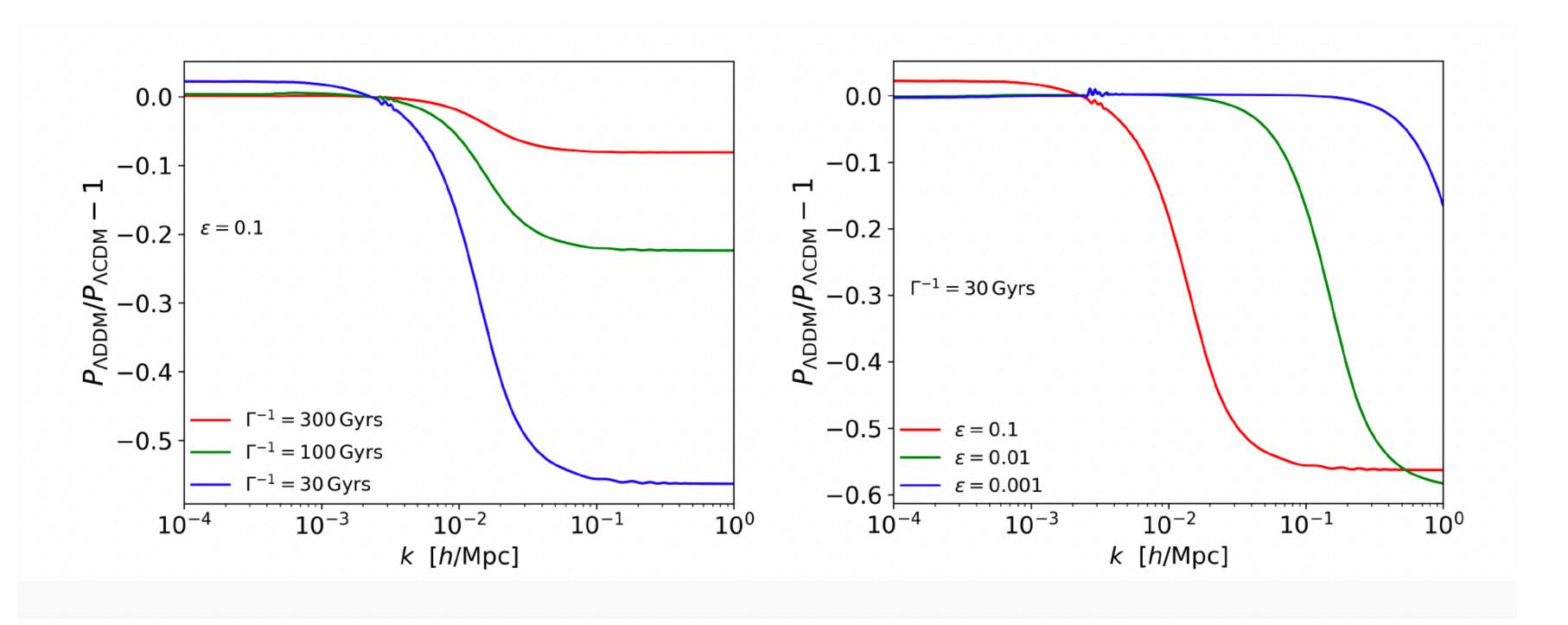
and

$$c_{\text{syn}}^2(k,\tau) = c_a^2(\tau) \left[1 + (1 - 2\varepsilon)T(k/k_{\text{fs}}) \right]$$

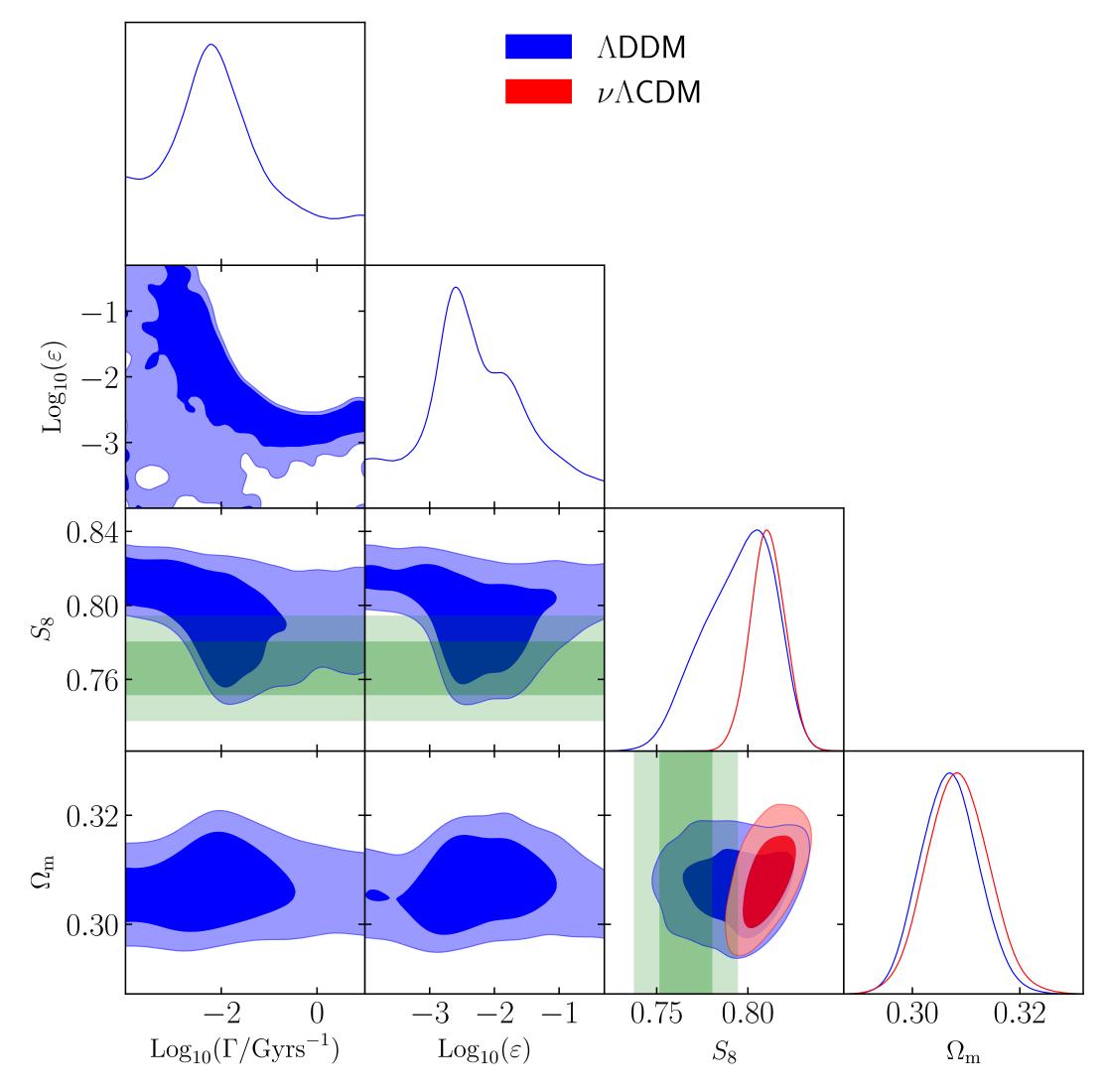
CPU time reduced from \sim 1 day to \sim 1 minute!

Impact of decaying DM on the matter spectrum

The WDM daughter leads to a power suppression in $P_m(k)$ at small scales $k > k_{\rm fs}$, where $k_{\rm fs} \sim aH/c_a$

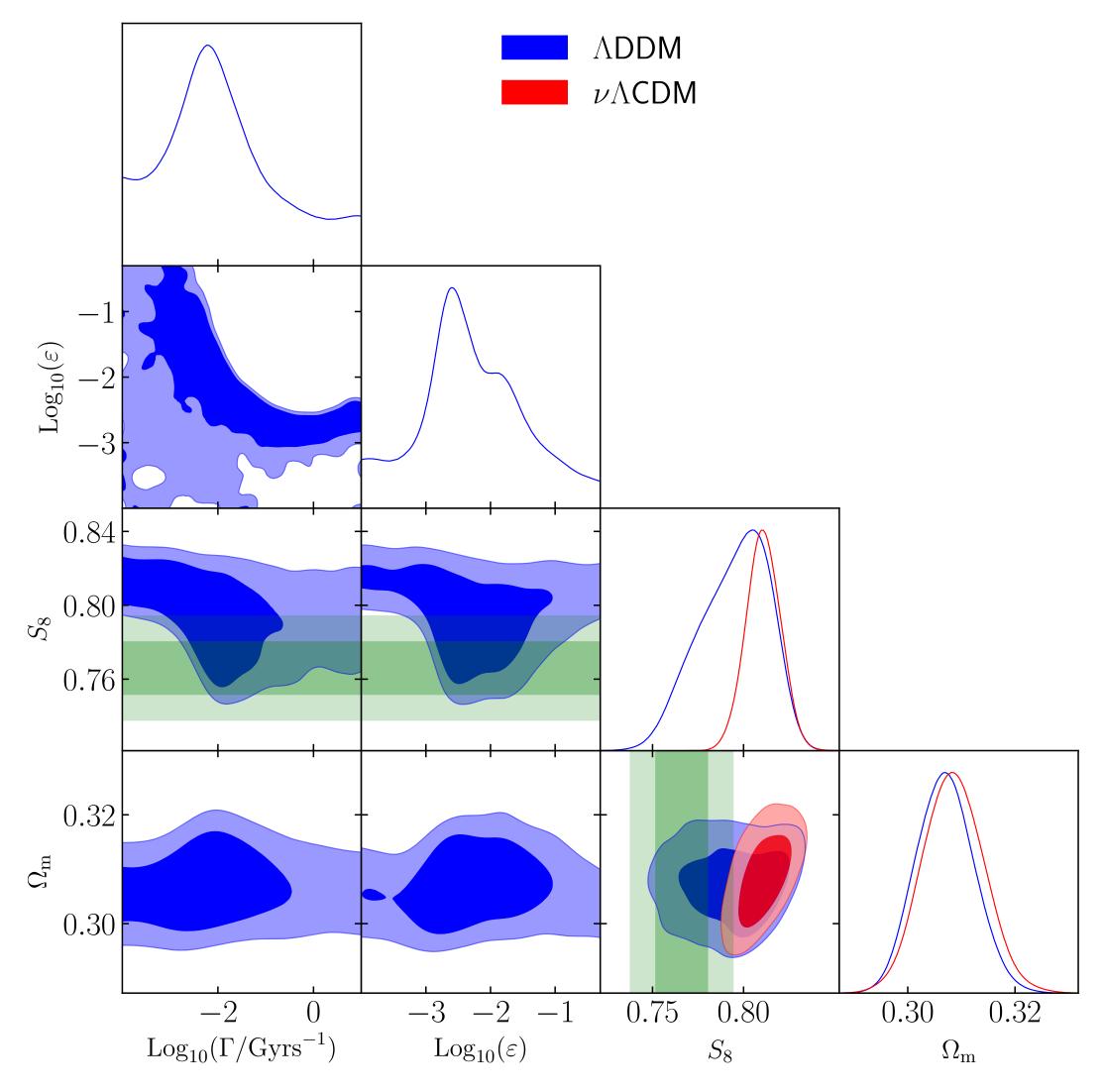


GFA, Murgia, Poulin 2008.09615



• MCMC analysis using
Planck+BAO+SNIa+prior on S₈
from KIDS+BOSS+2dfLenS

GFA, Murgia, Poulin 2102.12498



- MCMC analysis using
 Planck+BAO+SNIa+prior on S₈
 from KIDS+BOSS+2dfLenS
- Reconstructed S₈ values are in excellent agreement with WL data!

	ν Λ CDM	ΛDDM
$\chi^2_{ m CMB}$	1015.9	1015.2
$\chi^2_{S_8}$	5.64	0.002

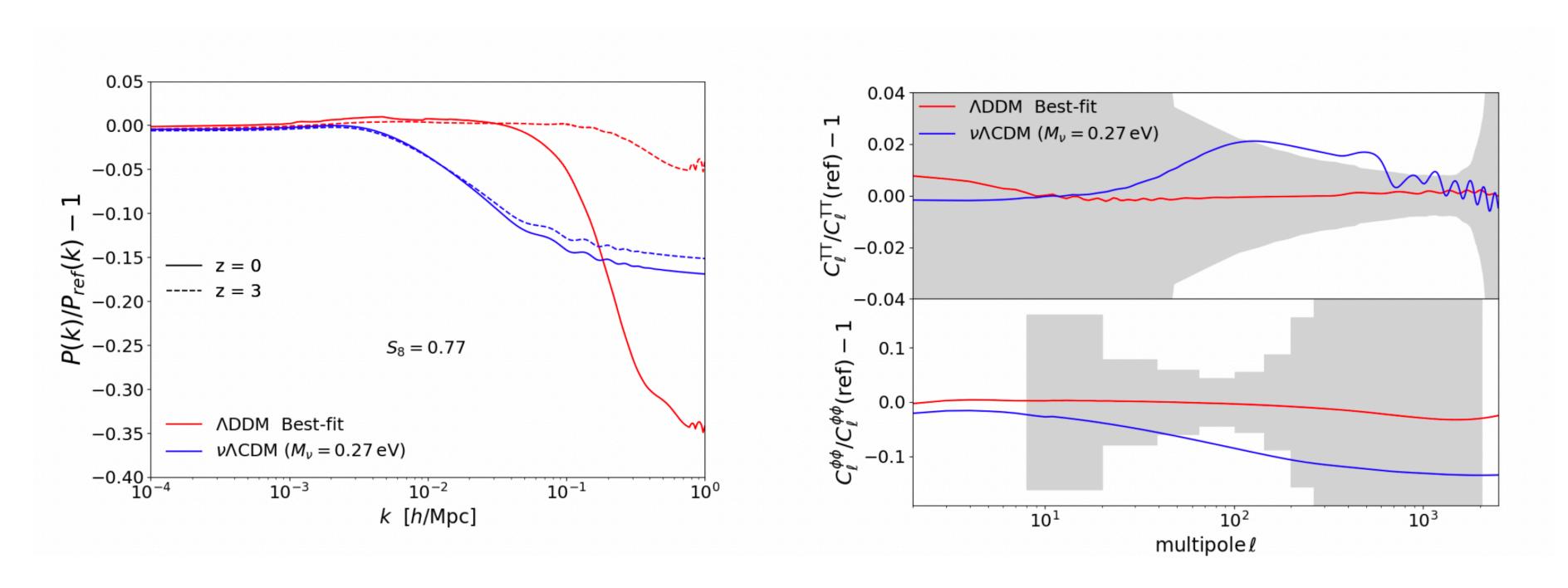
$$\longrightarrow \Delta \chi^2_{\rm min} \simeq -5.5$$

$$\Gamma^{-1} \simeq 55 \ (\varepsilon/0.007)^{1.4} \ \text{Gyr}$$

GFA, Murgia, Poulin 2102.12498

Why does the 2-body DM decay work better than massive neutrinos?

The 2-body decay gives a better fit thanks to the time-dependence of the power suppression and the cut-off scale



Interesting implications

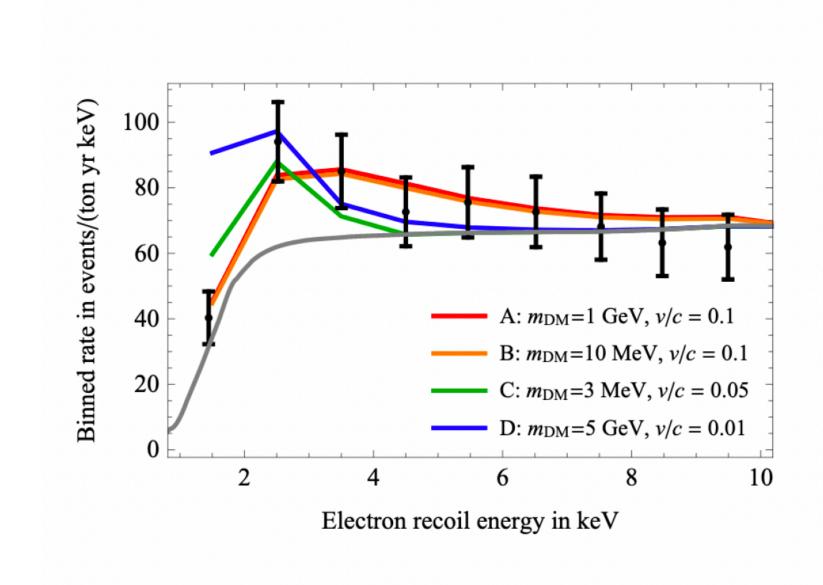
• Model building: Why $\varepsilon \ll 1/2$, i.e. $m_{wdm} \sim m_{dm}$? Ex: Supergravity Choi&Yanagida 2104.02958

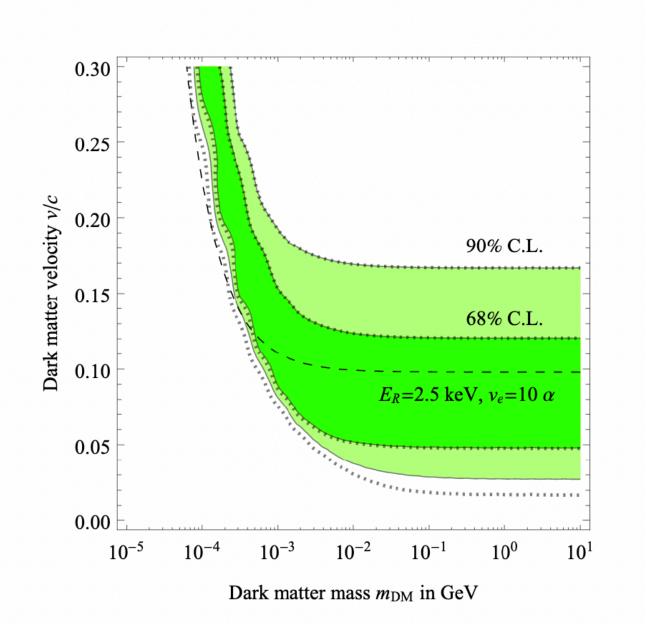
Interesting implications

- Model building: Why $\varepsilon \ll 1/2$, i.e. $m_{wdm} \sim m_{dm}$? Ex: Supergravity Choi&Yanagida 2104.02958
- Small-scale crisis of ACDM: Reduction in the abundance of subhalos and their concentrations Wang++ 1406.0527

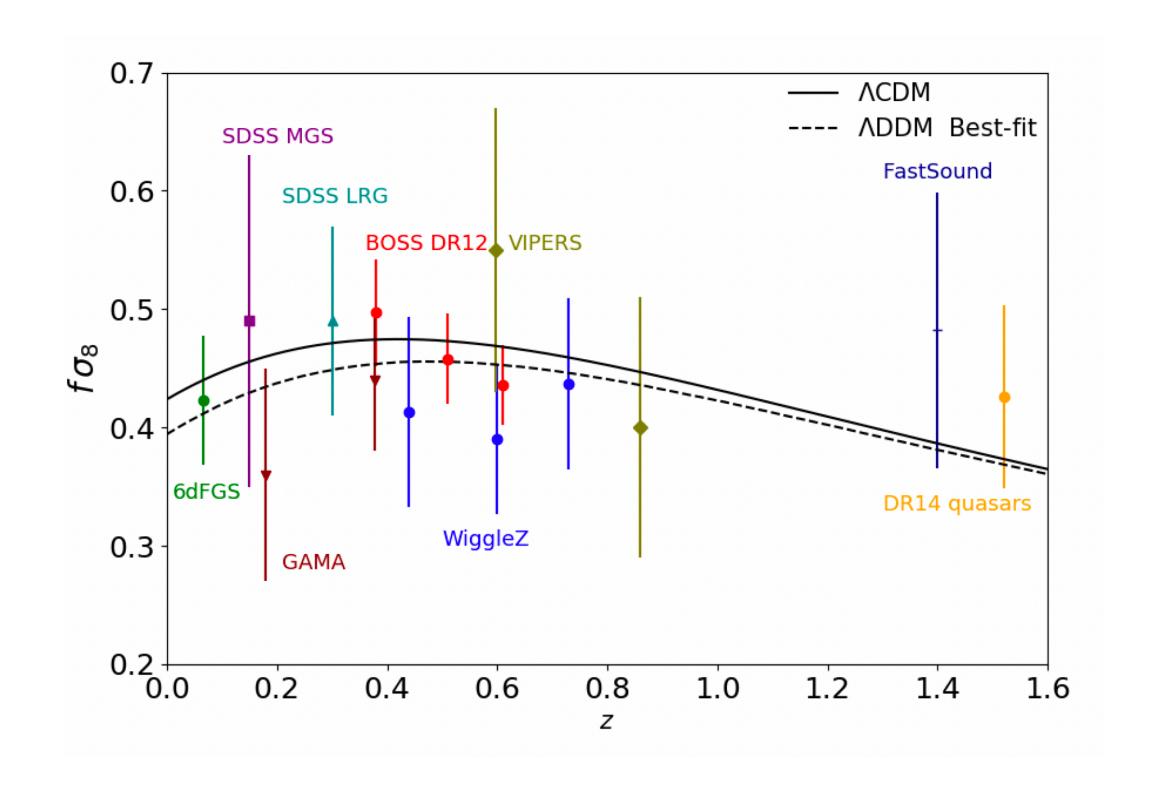
Interesting implications

- Model building: Why $\varepsilon \ll 1/2$, i.e. $m_{wdm} \sim m_{dm}$? Ex: Supergravity Choi&Yanagida 2104.02958
- Small-scale crisis of ACDM: Reduction in the abundance of subhalos and their concentrations Wang++ 1406.0527
- Xenon-1T excess: It could be explained by a fast DM component, such as the WDM, with $v/c \simeq \varepsilon$ Kannike++ 2006.10735





Prospects for the 2-body DM decay

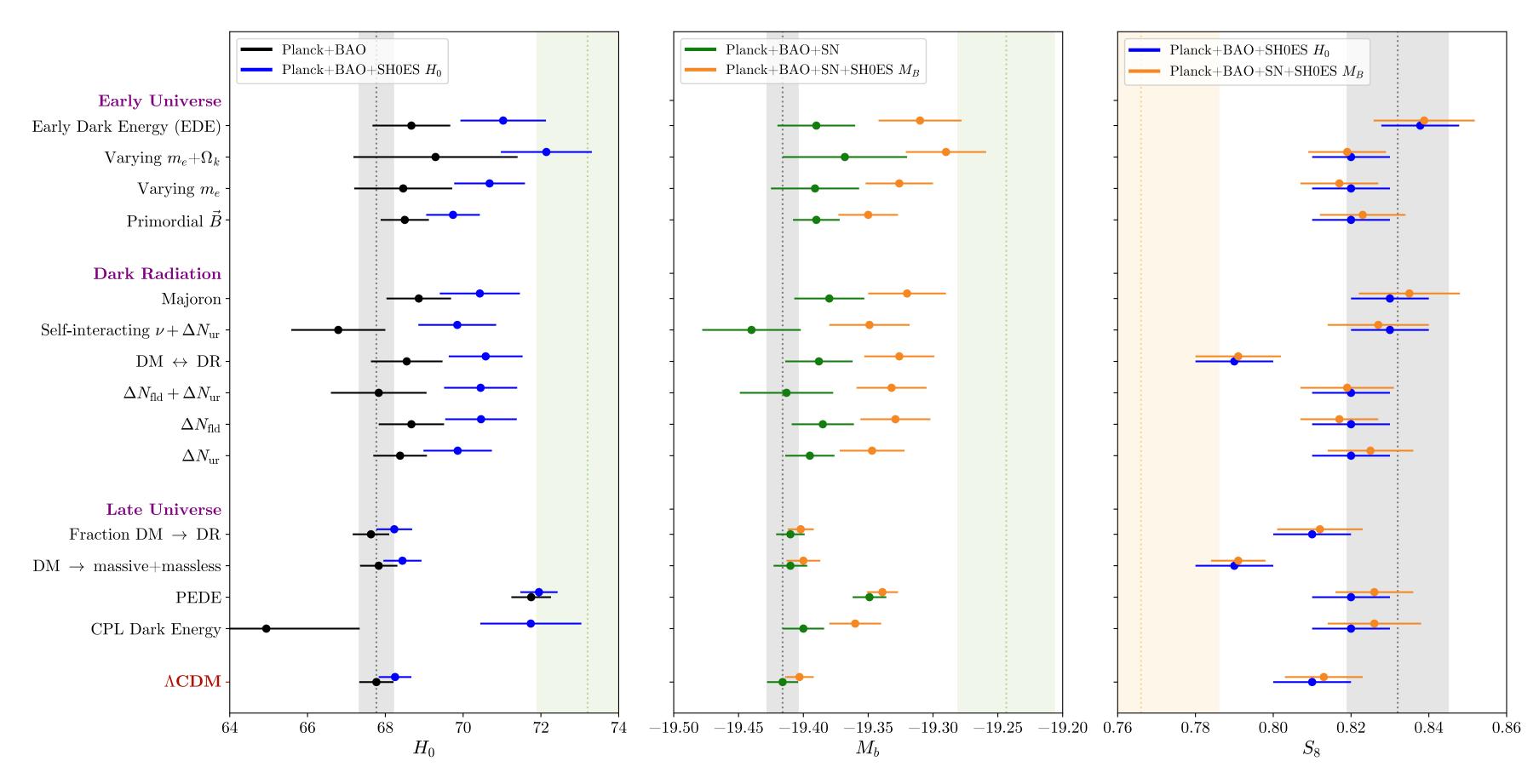


Accurate measurements of $f\sigma_8$ at $0 \le z \le 1$ will further test the 2-body decay

Next goal: Predict non-linear matter power spectrum (using either N-body simulations or EFT of LSS)

Addendum: The H₀ Olympics

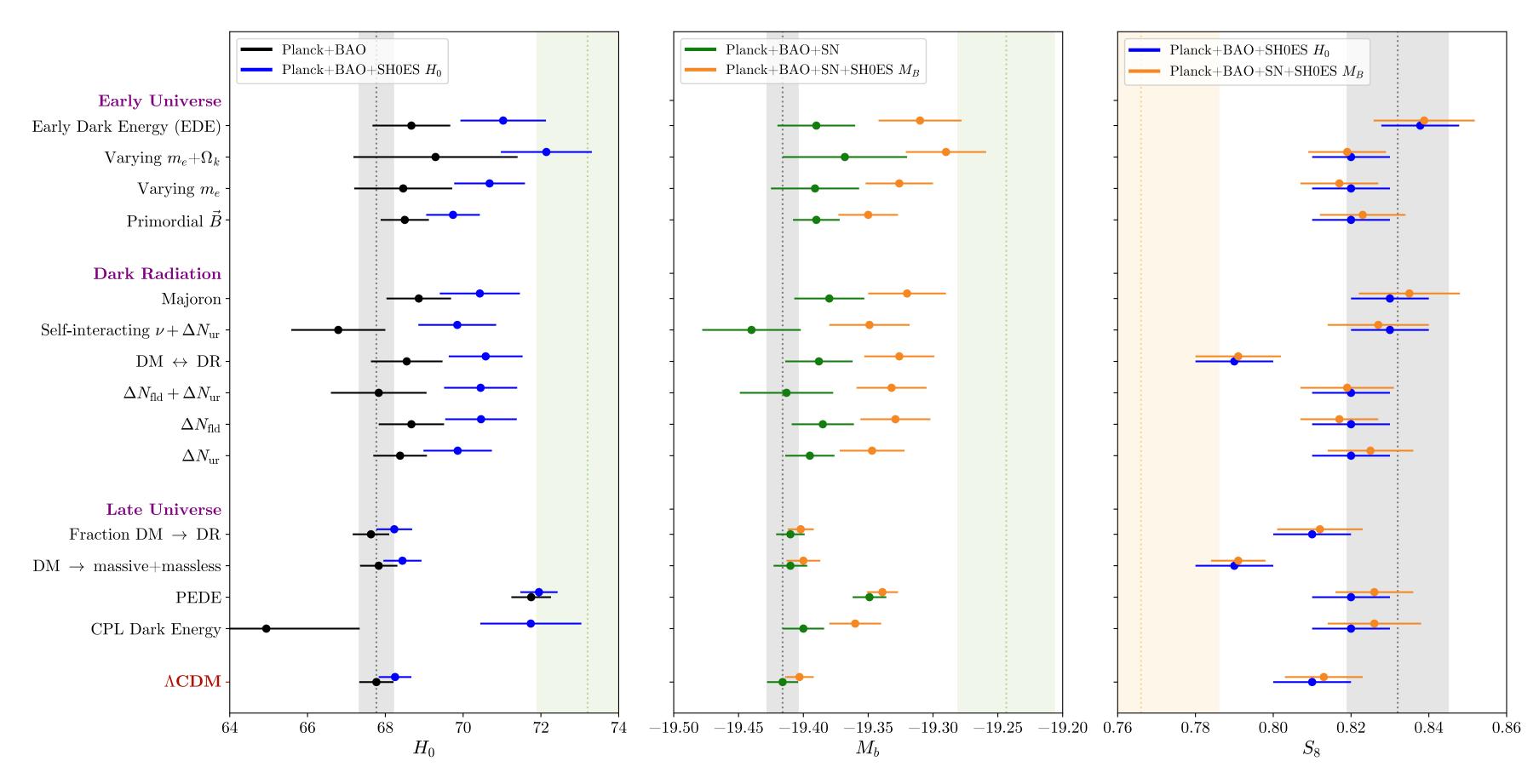
Goal: Take a representative sample of proposed solutions, and quantify the relative success of each using certain metrics and a wide array of data



16 different models considered, including EDE and DM → DR +WDM

Addendum: The H₀ Olympics

Goal: Take a representative sample of proposed solutions, and quantify the relative success of each using certain metrics and a wide array of data



16 different models considered, including EDE and DM → DR +WDM

• Λ CDM provides a remarkable fit to many observations, but there exists a 4-5 σ H_o tension and a 3 σ S₈ tension. These tensions offer an interesting window to the yet unknown dark sector.

- Λ CDM provides a remarkable fit to many observations, but there exists a 4-5 σ H_o tension and a 3 σ S₈ tension. These tensions offer an interesting window to the yet unknown dark sector.
- The H_o tension can be resolved by an Early Dark Energy (EDE) component, even when Large Scale Structure data is added to Planck, SNIa and BAO data.

- Λ CDM provides a remarkable fit to many observations, but there exists a 4-5 σ H_o tension and a 3 σ S₈ tension. These tensions offer an interesting window to the yet unknown dark sector.
- The H_o tension can be resolved by an Early Dark Energy (EDE) component, even when Large Scale Structure data is added to Planck, SNIa and BAO data.
- The S₈ anomaly can be explained by a 2-body Decaying Dark Matter (DDM), which has many interesting implications for model building, the Xenon-1T excess, etc.

- Λ CDM provides a remarkable fit to many observations, but there exists a 4-5 σ H_o tension and a 3 σ S₈ tension. These tensions offer an interesting window to the yet unknown dark sector.
- The H_o tension can be resolved by an Early Dark Energy (EDE) component, even when Large Scale Structure data is added to Planck, SNIa and BAO data.
- The S₈ anomaly can be explained by a 2-body Decaying Dark Matter (DDM), which has many interesting implications for model building, the Xenon-1T excess, etc.
- None of these models is able to relieve both tensions simultaneously. However, resolutions of these tensions might lie in different sectors ($H_0 \longleftrightarrow$ new background contribution, $S_8 \longleftrightarrow$ new perturbation properties).

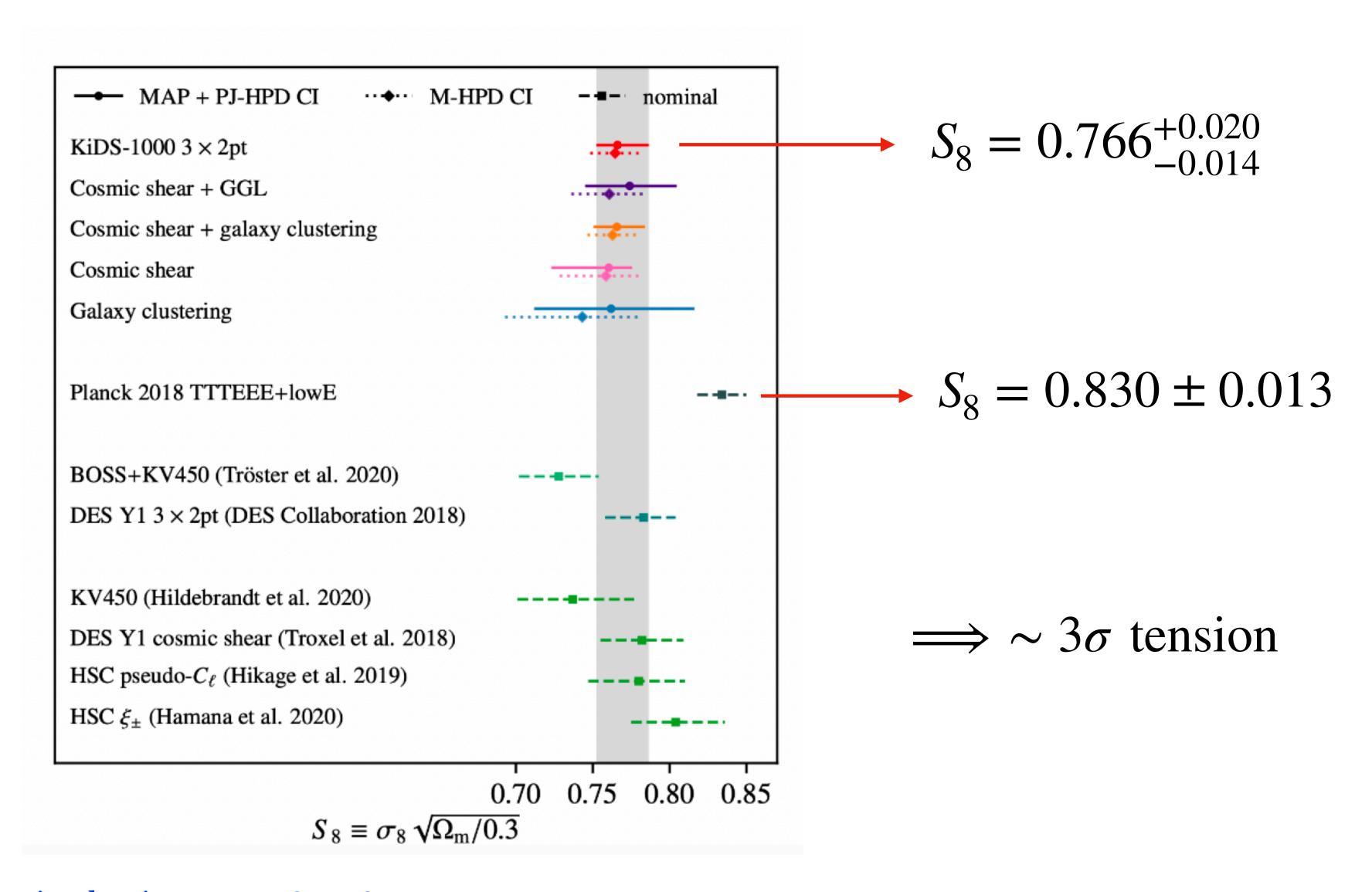
- Λ CDM provides a remarkable fit to many observations, but there exists a 4-5 σ H_o tension and a 3 σ S₈ tension. These tensions offer an interesting window to the yet unknown dark sector.
- The H_o tension can be resolved by an Early Dark Energy (EDE) component, even when Large Scale Structure data is added to Planck, SNIa and BAO data.
- The S₈ anomaly can be explained by a 2-body Decaying Dark Matter (DDM), which has many interesting implications for model building, the Xenon-1T excess, etc.
- None of these models is able to relieve both tensions simultaneously. However, resolutions of these tensions might lie in different sectors ($H_0 \longleftrightarrow$ new background contribution, $S_8 \longleftrightarrow$ new perturbation properties).

Clark++ 2110.09562

We might be on the verge of the discovery of a rich dark sector!

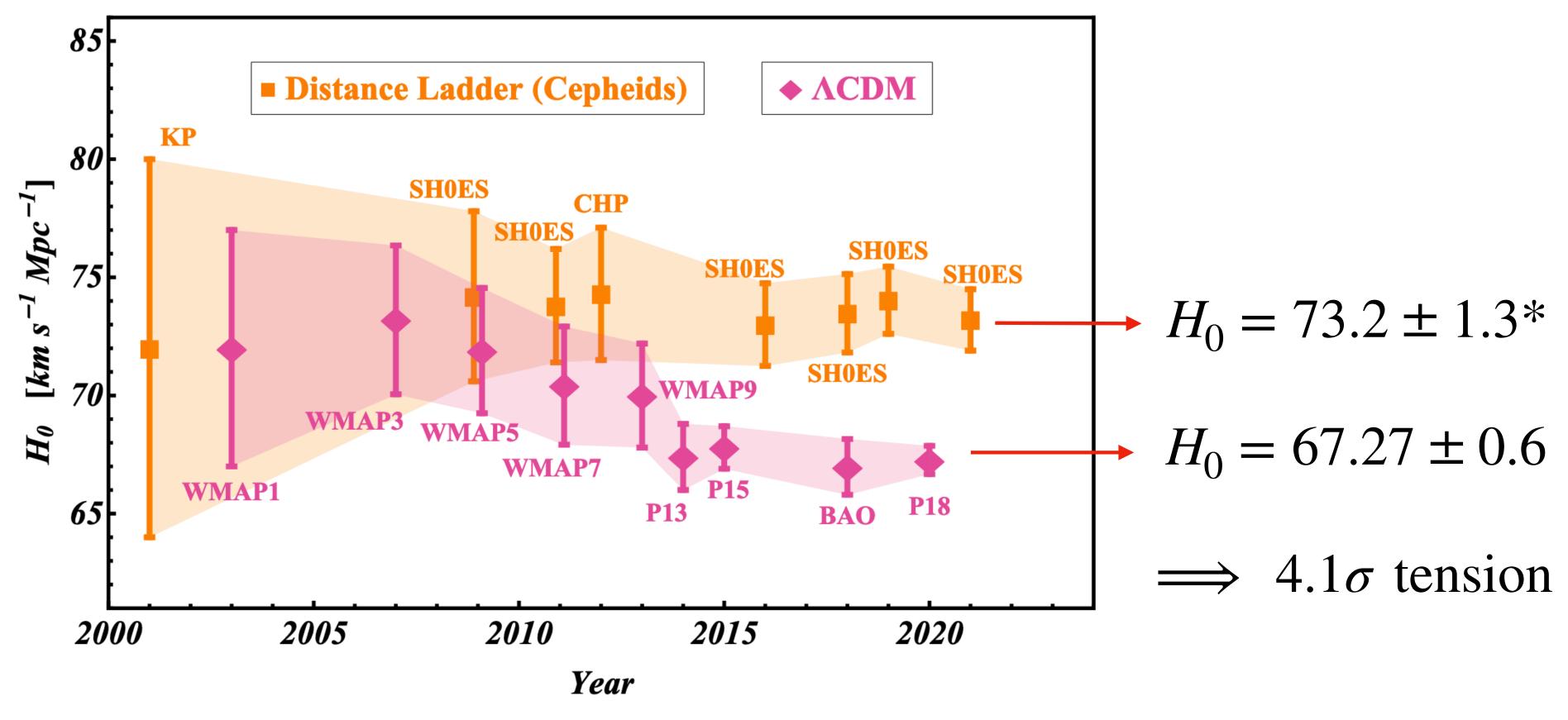
BACK-UP SLIDES

The S₈ tension



The Hotension

Predominantly driven by the Planck and SHoES collaborations



Perivolaropoulos&Skara 2105.05208

^{*}Units of km/s/Mpc are always assumed

Decaying dark matter

- Dark matter (DM) is assumed to be perfectly stable in Λ CDM Can we test this hypothesis?
- DM Decays to SM particles \longrightarrow very constrained From **e**. **m**. **impact** on CMB : $\Gamma^{-1} \gtrsim 10^8$ Gyr Poulin++ 1610.10051

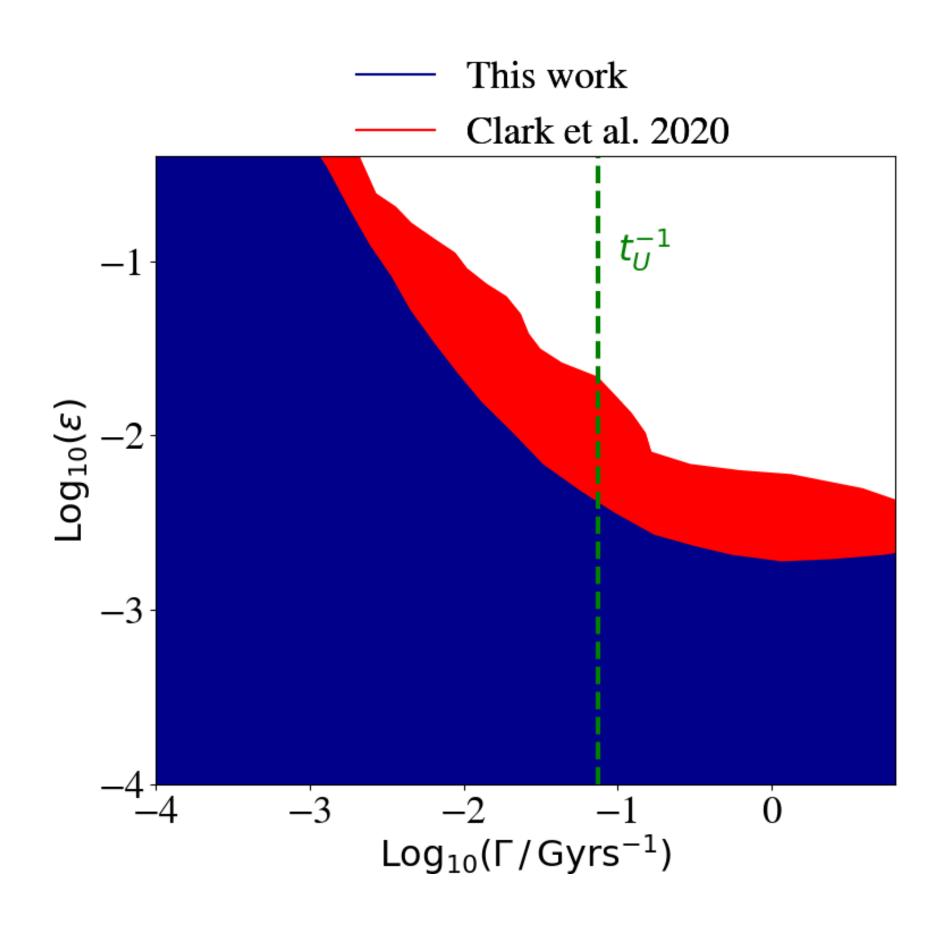
• DM decays to **massless** Dark Radiation ——— less constrained, but more model-independent

From grav. impact on CMB : $\Gamma^{-1} \gtrsim 10^2$ Gyr Audren++ 1407.2418 Poulin++ 1606.02073

What about massive products?

General constraints on the 2-body DM decay

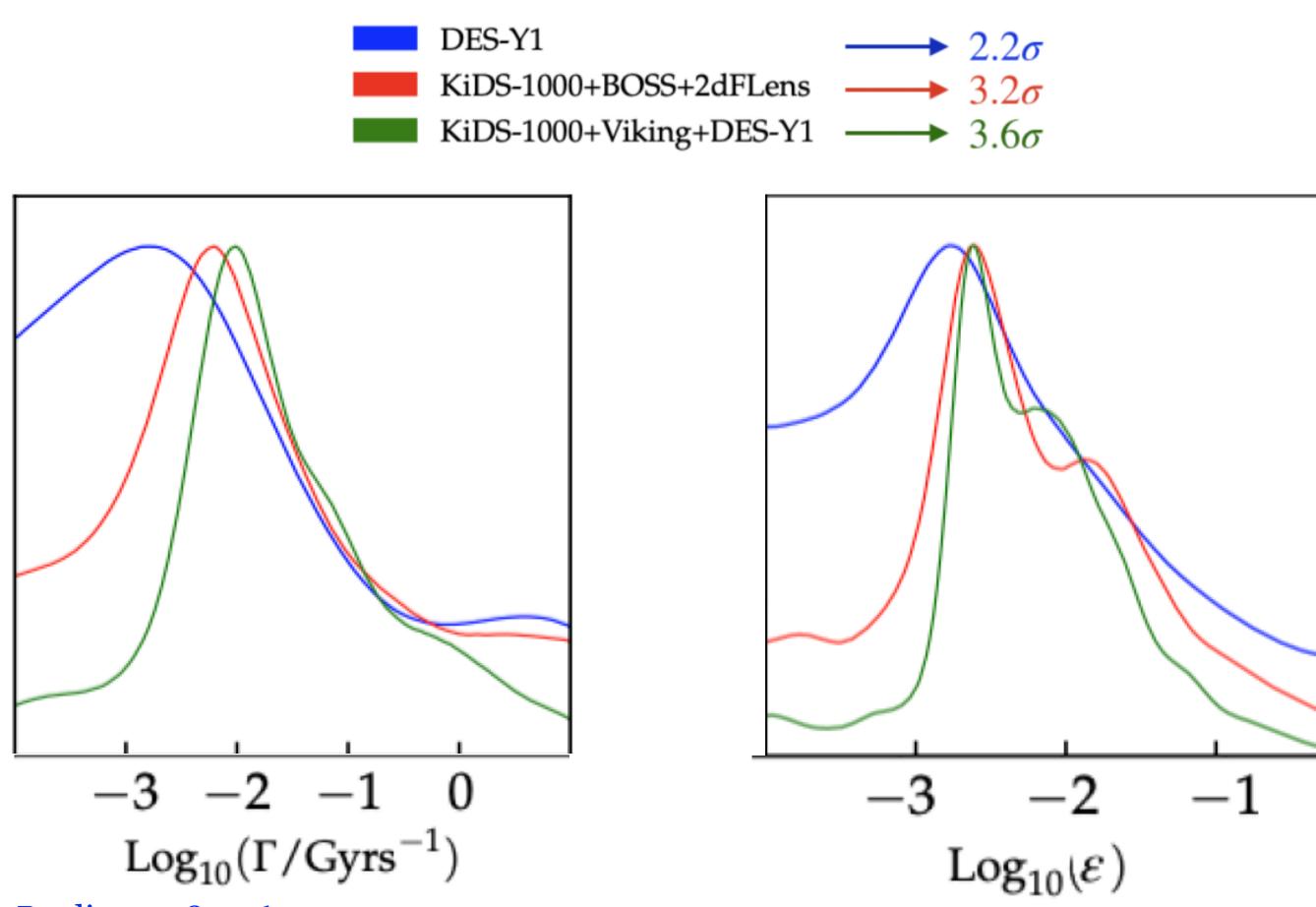
Planck+BAO+SNIa analysis



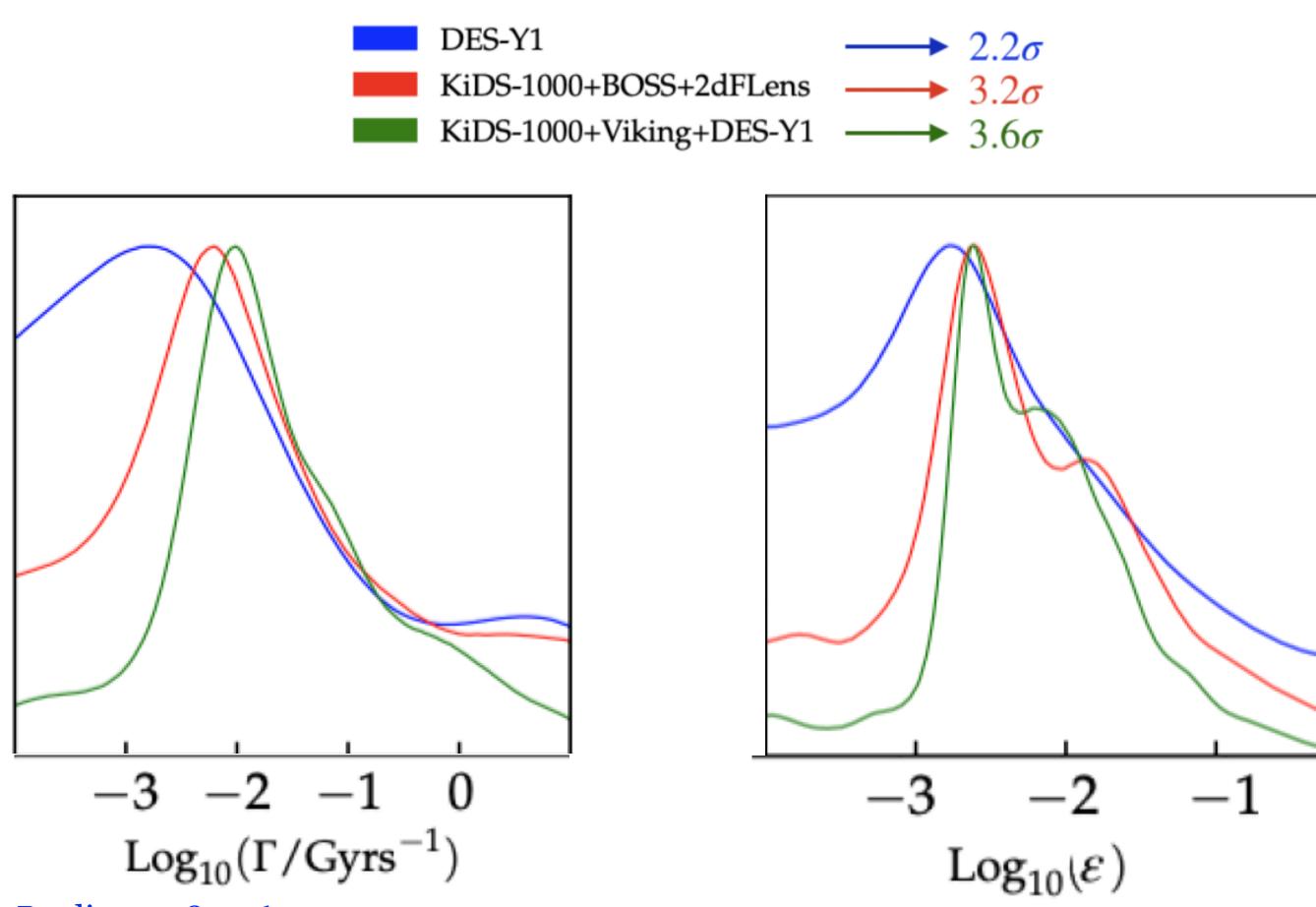
Strong negative correlation between ε and Γ

Constraints up to 1 order of magnitude stronger than previous literature

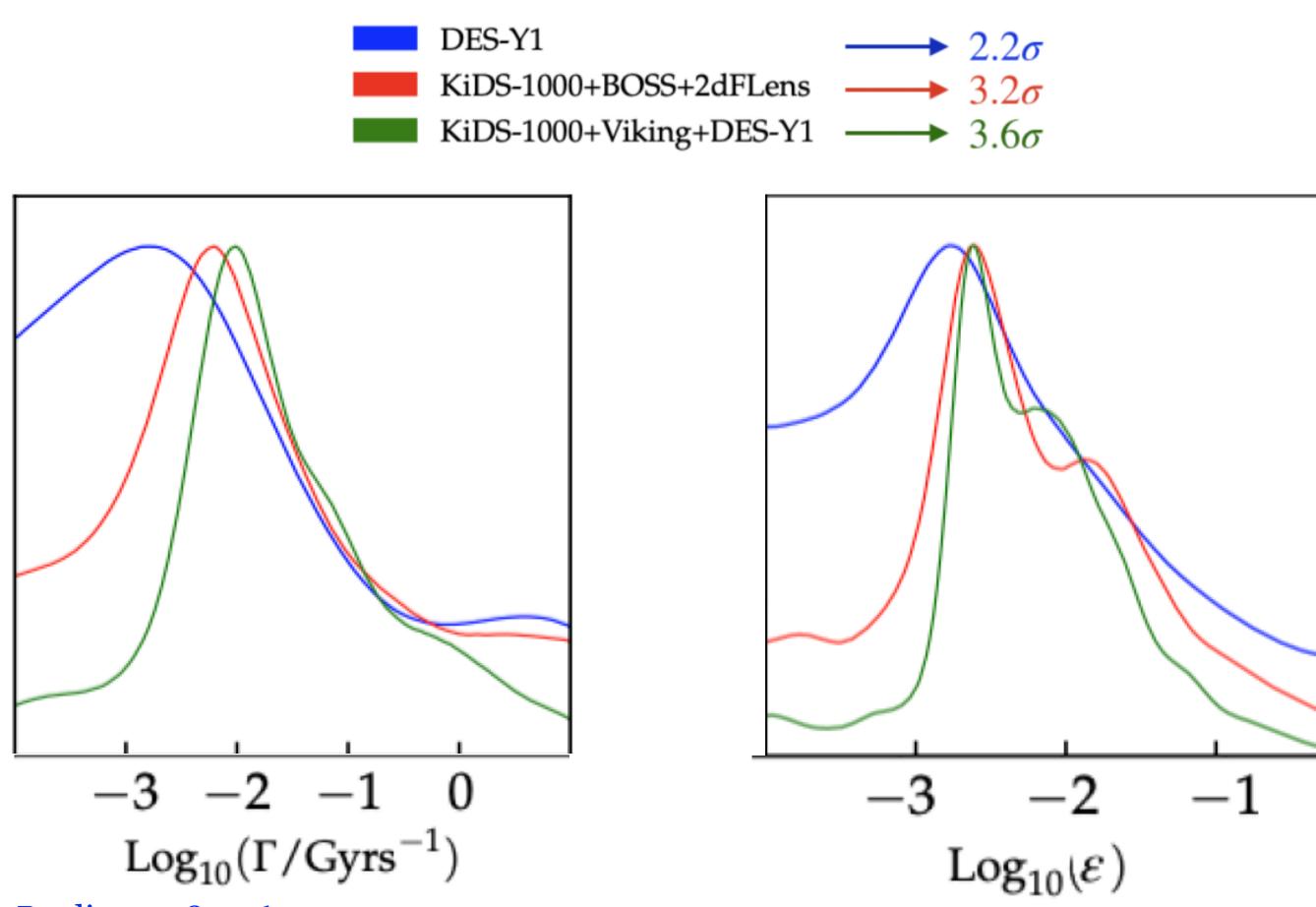
The level of detection depends on the level of tension with Λ CDM



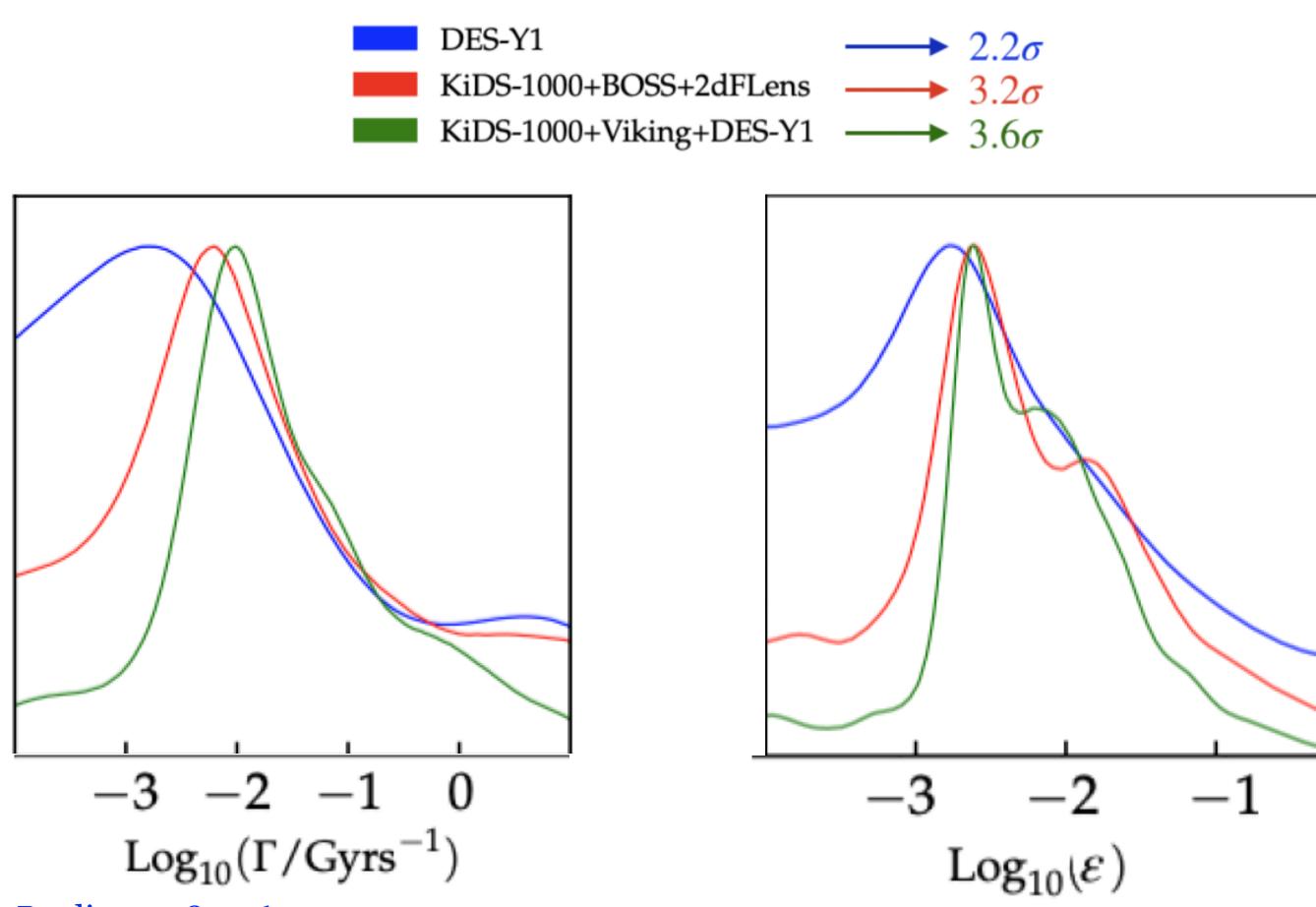
The level of detection depends on the level of tension with Λ CDM



The level of detection depends on the level of tension with Λ CDM



The level of detection depends on the level of tension with Λ CDM



The level of detection depends on the level of tension with Λ CDM

