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Photons/neutrinos

 ~ 0.001 %Inflation

2

Concordance ΛCDM model of cosmology:

Some open problems:

Nature of dark sector?

H0/S8 tensions?
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Growing interest in testing ΛCDM extensions…
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…but still no smoking-gun signature of new physics

Growing interest in testing ΛCDM extensions…
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Next-generation cosmological data is becoming available

    Analysing these high-quality data will be 

extremely challenging with traditional methods
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Machine learning is 
having a strong impact

in cosmology
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Two main approaches in ML

This talk

Emulators
to achieve ultra-fast evaluations 
of cosmological observables

New statistical methods
to improve the sampling in high-
dimensional parameter spaces
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Bayesian inference

Posterior
Likelihood

Evidence

p(θ |x) =
p(x |θ)

p(x)
p(θ)
Prior

Parameters
Data

θ :
x :
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θ ∼ p(θ |x), θ ∈ ℝD

Metropolis-Hastings algorithm

Traditional likelihood-based methods 
(MCMC, Nested Sampling,…) allow to get 
samples from the full joint posterior 
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θ ∼ p(θ |x), θ ∈ ℝD

Metropolis-Hastings algorithm

Traditional likelihood-based methods 
(MCMC, Nested Sampling,…) allow to get 
samples from the full joint posterior 

Then we marginalise to get 

posteriors of interest 
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The curse of dimensionality

These methods scale poorly with the 
dimensionality of the parameter space

Handley+ 15

https://arxiv.org/abs/1506.00171


10

The curse of dimensionality

These methods scale poorly with the 
dimensionality of the parameter space

Handley+ 15

Ex: For Stage IV surveys, we expect  

~100 nuisance parameters

Weeks…

https://arxiv.org/abs/1506.00171
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Are there methods to overcome this problem?
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Are there methods to overcome this problem?

Can machine learning be helpful?
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[Miller+ 20]
MNRE = Marginal Neural Ratio Estimation
Implemented in Swyf* 

* Stop Wasting Your Precious Time

https://arxiv.org/abs/2011.13951
https://github.com/undark-lab/swyft
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I. Why we need to go beyond MCMC

II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to Stage IV photometric observables
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1. Simulation

2. Inference

(generate training data)

(train networks to get posteriors)
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Simulation-based inference 

(or likelihood-free inference)

1. Simulation
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Simulation-based inference 

(or likelihood-free inference)

Stochastic simulator that maps from 
model parameters θ to data x

x ∼ p(x |θ) (implicit likelihood)

1. Simulation
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We can simulate N samples that can be used as training data for a neural network

{(x(1), θ(1)), (x(2), θ(2)), . . . , (x(N), θ(N))}
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We can simulate N samples that can be used as training data for a neural network

{(x(1), θ(1)), (x(2), θ(2)), . . . , (x(N), θ(N))}

Ex: CMB simulator 

Cole+ 22

θ → Cℓ(θ) → Cℓ(θ) + Nℓ

https://arxiv.org/abs/2111.08030
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Neural Ratio Estimation

r(x; θ) =
p(x, θ)

p(x)p(θ)

Instead of directly estimating the 
posterior, estimate:

2. Inference
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Neural Ratio Estimation

r(x; θ) =
p(x, θ)

p(x)p(θ)

Instead of directly estimating the 
posterior, estimate:

It’s easy to show that:

p(x, θ)
p(x)p(θ)

=
p(θ |x)

p(θ)
(posterior-to-
prior ratio)

2. Inference
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θ ∼ p(θ)

x ∼ p(x)

(ex: Ωb and Ωc )

(ex: CMB spectra)

p(x, θ)
p(x)p(θ)

=
p(θ |x)

p(θ)
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θ ∼ p(θ)

x ∼ p(x)

(ex: Ωb and Ωc )

Given some (x, θ) pair, are they drawn jointly or marginally?

Rephrase inference as a binary classification problem

(ex: CMB spectra)

(x, θ) ∼ p(x, θ) (jointly drawn)

Ωb =
Ωc =

5%

25%

30%

0%
5%

95%

(x, θ) ∼ p(x)p(θ) (marginally drawn)

Ωb =
Ωc =

5%

25%

30%

0%
5%

95%

p(x, θ)
p(x)p(θ)

=
p(θ |x)

p(θ)
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We can directly target marginal posteriors of interest, 

and forget about the rest
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Cole+ 22

r

p(θ3, θ4 |x)

Estimates

Does not estimate

p(θ1 |x), p(θ2 |x),

p(θ1, θ2 |x), p(θ1, θ2, θ3 |x), . . .

We can directly target marginal posteriors of interest, 

and forget about the rest

https://arxiv.org/abs/2111.08030


20
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cParameters 

  1 and 10

cAny other

combination
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Much more flexible 
much more efficient!

Instead of estimating all parameters… … we can cherry-pick what we care about

Parameter 1 Parameter 10

cParameters 

  1 and 10

cAny other

combination
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MNRE has been successfully applied in many contexts:

Strong lensing

Stellar Streams

Gravitational Waves

CMB [Cole+ 22]

[Bhardwaj+ 23] [Alvey+ 23]

[Alvey+ 23]

[Montel+ 22]

21-cm [Saxena+ 23]

https://arxiv.org/abs/2111.08030
https://arxiv.org/abs/2303.07339
https://arxiv.org/abs/2304.02035
https://arxiv.org/abs/2308.06318
https://arxiv.org/abs/2304.02032
https://arxiv.org/abs/2205.09126
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MNRE has been successfully applied in many contexts:

Strong lensing

Stellar Streams

Gravitational Waves

CMB [Cole+ 22]

[Bhardwaj+ 23] [Alvey+ 23]

[Alvey+ 23]

[Montel+ 22]

21-cm [Saxena+ 23]

Our goal: apply MNRE to Stage IV photometric observables

https://arxiv.org/abs/2111.08030
https://arxiv.org/abs/2303.07339
https://arxiv.org/abs/2304.02035
https://arxiv.org/abs/2308.06318
https://arxiv.org/abs/2304.02032
https://arxiv.org/abs/2205.09126
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II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to Stage IV photometric observables
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Summarise maps of galaxy positions/shapes using three 2-point 
statistics (3x2pt) measured at 10 tomographic redshif bins

Cosmic Shear

Galaxy clustering

Galaxy-Galaxy lensing

3x2pt photometric probes
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Summarise maps of galaxy positions/shapes using three 2-point 
statistics (3x2pt) measured at 10 tomographic redshif bins

Cosmic Shear

Galaxy clustering

Galaxy-Galaxy lensing

3x2pt photometric probes

…described by angular power spectra CXY
ij (ℓ) = ∫ dz WX

i (z)WY
j (z) Pm(kℓ, z)
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1. Simulator

Swyft 3x2pt analysis
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We generate 50k realisations of 
3x2pt spectra with gaussian noise

ĈAB
ij (ℓ) = CAB

ij (ℓ) + nAB
ij (ℓ)

𝒩(0,C)



24

1. Simulator

Swyft 3x2pt analysis

We generate 50k realisations of 
3x2pt spectra with gaussian noise
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1. Simulator

Swyft 3x2pt analysis

2. Network

We do a pre-compression of data 
using PCA and parameter-specific 

data summaries

We generate 50k realisations of 
3x2pt spectra with gaussian noise

ĈAB
ij (ℓ) = CAB

ij (ℓ) + nAB
ij (ℓ)

𝒩(0,C)

12 nuisance params

{AIA, ηIA, b1, . . . , b10}
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MNRE & MCMC are in 
excellent agreement! 
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MNRE & MCMC are in 
excellent agreement! 

Dramatic reduction 

in CPU time!
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With MNRE, we can also test models with highly non-Gaussian posteriors
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With MNRE, we can also test models with highly non-Gaussian posteriors

As an example, we consider a model of CDM decaying to DR + WDM 

(proposed to explain the S8 tension)

e−Γtχ

γ′￼

ψ

Decay rate Γ
WDM velocity kick vk

[Abellan+ 21]
[Bucko+ 23]

https://arxiv.org/abs/2102.12498
https://arxiv.org/abs/2307.03222
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Forecast constraints 

on decaying DM

MNRE & MCMC in 
good agreement 

Improve current limits by 
~1 order of magnitude!
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Use simulator based on CLOE (many more nuisance params.)
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Next steps

Use simulator based on CLOE (many more nuisance params.)

Consider other observables, like spectroscopic galaxy clustering

Perform field-level inference to extract all possible information
[Lemos+ 23]
[Jeffrey+ 24]

https://arxiv.org/abs/2310.15256
https://arxiv.org/abs/2403.02314
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Conclusions

To learn as much as we can about the dark 
sector from future data, we need to go 

beyond traditional methods 

Euclid's view of the Perseus cluster of galaxies
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Conclusions

To learn as much as we can about the dark 
sector from future data, we need to go 

beyond traditional methods 

MNRE provides a powerful framework to 

constrain ΛCDM and its extensions with next-
generation LSS surveys (like Euclid)


THANKS FOR YOUR ATTENTION
g.francoabellan@uva.nl

Euclid's view of the Perseus cluster of galaxies
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BACK-UP
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Strategy: train a neural network                             as a binary classifier,

so that

dϕ(x, θ) ∈ [0,1]

(x, θ) ∼ p(x, θ) = p(x |θ)p(θ)

(x, θ) ∼ p(x)p(θ)

dϕ(x, θ) ≃ 1

dϕ(x, θ) ≃ 0

if

if

Note: Φ denotes all the network parameters
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We have to minimise a loss function w.r.t. the network params. Φ

L[dϕ(x, θ)] = − ∫ dxdθ [p(x, θ)ln(dϕ(x, θ)) + p(x)p(θ)ln(1 − dϕ(x, θ))]

which yields

dϕ(x, θ) ≃
p(x, θ)

p(x, θ) + p(x)p(θ)
=

r(x; θ)
r(x; θ) + 1
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But can we trust our results?

…even if NNs are often seen as ''black boxes’’, it is possible to perform 
statistical consistency tests which are impossible with MCMC



34

Trained networks can estimate effortlessly 

the posteriors for all simulated observations
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Ex: Is the estimated 68.27% interval covering the

ground truth in ~68% of the cases? 

H0

65.0 67.0 69.0

H0

65.0 67.0 69.0
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65.0 67.0 69.0

H0

65.0 67.0 69.0

H0

65.0 67.0 69.0

H0

65.0 67.0 69.0
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We can empirically estimate the Bayesian coverage

Converged network Non-converged network

H0 H0

H
0

H
0
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Coverage test for Euclid 3x2pt

Empirical coverage and confidence level

match to excellent precision!
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Network architecture 

{H0, ωcdm, ns . . . } + {AIA, b1, . . . }
Nparams

cosmo nuisance

x = .... . .

Nspectra × Nbin,ℓ

.............................

..........................

ℓℓ

C
AB ij

(ℓ
)

....

compression

1 Cholesky

2 PCA

3 Linear

S1

..
.

S2Nparams

features

θi

θj

Si2
Sj1

Sj2

Si1

θ = θi

Si2

0
Si1

p(θi, θj |x)
p(θi |x)

ratio estimators
∀(i, j), where i ≠ j
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Posteriors for 

nuisance parameters
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1.
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Swyft, 1.5 hrs (simulation)
. + 5 mins (training)

MCMC, ª 3 days

MNRE & MCMC are again 
in good agreement 
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Another big advantage 

of MNRE: simulation re-use
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It is interesting to see 
how constraints 
change with different 
data combinations 
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BUT
It is interesting to see 
how constraints 
change with different 
data combinations 

with MCMC, one has to 
restart chains for each 
experimental configuration

In MNRE it is possible 
to re-use simulations 
for different data 
combinations
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The idea is to simulate all the data at once, and then train different 
inference networks for different data combinations
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The idea is to simulate all the data at once, and then train different 
inference networks for different data combinations

Ex: Planck+BAO 

Cole+ 22

https://arxiv.org/abs/2111.08030

