Fast likelihood-free inference in the LSS Stage-IV era

Guillermo Franco Abellán

Euclid TWG/WP17 - 26th April 2024

Based on <u>arXiv:2403.14750</u>

with Guadalupe Cañas-Herrera,
Matteo Martinelli,
Oleg Savchenko,
Davide Sciotti,
& Christoph Weniger

Some open problems:

Some open problems:

Nature of dark sector?

Some open problems:

- Nature of dark sector?
- H₀/S₈ tensions?

Growing interest in testing \(\Lambda\)CDM extensions...

Growing interest in testing \(\Lambda\)CDM extensions...

...but still no smoking-gun signature of new physics

Next-generation cosmological data is becoming available

Next-generation cosmological data is becoming available

Analysing these high-quality data will be extremely challenging with traditional methods

Outline

I. Why we need to go beyond MCMC

II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to Stage IV photometric observables

Outline

I. Why we need to go beyond MCMC

II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to Stage IV photometric observables

Machine learning is having a strong impact in cosmology

Emulators

to achieve **ultra-fast** evaluations of cosmological observables

Emulators

to achieve **ultra-fast** evaluations of cosmological observables

New statistical methods

to improve the sampling in highdimensional parameter spaces

Emulators

to achieve **ultra-fast** evaluations of cosmological observables

New statistical methods

to improve the sampling in highdimensional parameter spaces

This talk

Bayesian inference

Posterior
$$p(\theta \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \theta)}{p(\mathbf{x})} Prior$$

$$p(\mathbf{x} \mid \theta) p(\theta)$$

$$p(\mathbf{x} \mid \theta)$$
Evidence

X: Data

 θ : Parameters

Metropolis-Hastings algorithm

Traditional likelihood-based methods (MCMC, Nested Sampling,...) allow to get samples from the full joint posterior

$$\theta \sim p(\theta \mid \mathbf{x}), \quad \theta \in \mathbb{R}^D$$

Metropolis-Hastings algorithm

Traditional likelihood-based methods (MCMC, Nested Sampling,...) allow to get samples from the full joint posterior

$$\theta \sim p(\theta \mid \mathbf{x}), \quad \theta \in \mathbb{R}^D$$

Then we marginalise to get posteriors of interest

The curse of dimensionality

These methods scale poorly with the dimensionality of the parameter space

Handley+ 15

The curse of dimensionality

These methods scale poorly with the dimensionality of the parameter space

Handley+ 15

Ex: For Stage IV surveys, we expect ~100 nuisance parameters

Weeks...

Are there methods to overcome this problem?

Are there methods to overcome this problem?

Can machine learning be helpful?

MNRE = Marginal Neural Ratio Estimation

Implemented in Swyft* [Miller+ 20]

^{*} Stop Wasting Your Precious Time

I. Why we need to go beyond MCMC

II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to Stage IV photometric observables

1. Simulation (generate training data)

2. Inference

(train networks to get posteriors)

1. Simulation

Simulation-based inference (or likelihood-free inference)

1. Simulation

Simulation-based inference (or likelihood-free inference)

Stochastic simulator that maps from model parameters $\boldsymbol{\theta}$ to data \boldsymbol{x}

 $\mathbf{x} \sim p(\mathbf{x} \mid \boldsymbol{\theta})$ (implicit likelihood)

We can simulate N samples that can be used as training data for a neural network

$$\{(\mathbf{x}^{(1)}, \boldsymbol{\theta}^{(1)}), (\mathbf{x}^{(2)}, \boldsymbol{\theta}^{(2)}), \dots, (\mathbf{x}^{(N)}, \boldsymbol{\theta}^{(N)})\}$$

We can simulate N samples that can be used as training data for a neural network

$$\{(\mathbf{x}^{(1)}, \boldsymbol{\theta}^{(1)}), (\mathbf{x}^{(2)}, \boldsymbol{\theta}^{(2)}), \dots, (\mathbf{x}^{(N)}, \boldsymbol{\theta}^{(N)})\}$$

Ex: CMB simulator

$$oldsymbol{ heta}
ightarrow C_{\ell}(oldsymbol{ heta})
ightarrow C_{\ell}(oldsymbol{ heta}) + N_{\ell}$$

Neural Ratio Estimation

Instead of directly estimating the posterior, estimate:

$$r(\mathbf{x}; \boldsymbol{\theta}) = \frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x})p(\boldsymbol{\theta})}$$

2. Inference

Neural Ratio Estimation

Instead of directly estimating the posterior, estimate:

$$r(\mathbf{x}; \boldsymbol{\theta}) = \frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x})p(\boldsymbol{\theta})}$$

It's easy to show that:

$$\frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x})p(\boldsymbol{\theta})} = \frac{p(\boldsymbol{\theta} \mid \mathbf{x})}{p(\boldsymbol{\theta})}$$
 (posterior-to-prior ratio)

2. Inference

$$\theta \sim p(\theta)$$
 (ex: Ω_b and Ω_c)

$$x \sim p(x)$$
 (ex: CMB spectra)

$$\frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x})p(\boldsymbol{\theta})} = \frac{p(\boldsymbol{\theta} \mid \mathbf{x})}{p(\boldsymbol{\theta})}$$

$$\theta \sim p(\theta)$$
 (ex: Ω_b and Ω_c)

$$x \sim p(x)$$
 (ex: CMB spectra)

$(\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x}, \boldsymbol{\theta})$ (jointly drawn)

$$\Omega_b$$
 = 5% 30% 5% Ω_c = 25% 0% 95%

$$\frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x})p(\boldsymbol{\theta})} = \frac{p(\boldsymbol{\theta} \mid \mathbf{x})}{p(\boldsymbol{\theta})}$$

$$\theta \sim p(\theta)$$
 (ex: Ω_b and Ω_c)

$$x \sim p(x)$$
 (ex: CMB spectra)

$\frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x})p(\boldsymbol{\theta})} = \frac{p(\boldsymbol{\theta} \mid \mathbf{x})}{p(\boldsymbol{\theta})}$

$(\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x}, \boldsymbol{\theta})$ (jointly drawn)

$(\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x})p(\boldsymbol{\theta})$ (marginally drawn)

$$\theta \sim p(\theta)$$
 (ex: Ω_b and Ω_c)

$$x \sim p(x)$$
 (ex: CMB spectra)

$(\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x}, \boldsymbol{\theta})$ (jointly drawn)

$(\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x})p(\boldsymbol{\theta})$ (marginally drawn)

Given some (x, θ) pair, are they drawn jointly or marginally?

$$\theta \sim p(\theta)$$
 (ex: Ω_b and Ω_c)

$$x \sim p(x)$$
 (ex: CMB spectra)

$(\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x}, \boldsymbol{\theta})$ (jointly drawn)

$(\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x})p(\boldsymbol{\theta})$ (marginally drawn)

Given some (x, θ) pair, are they drawn jointly or marginally?

Rephrase inference as a binary classification problem

We can directly target marginal posteriors of interest, and forget about the rest

We can directly target marginal posteriors of interest, and forget about the rest

Estimates

$$p(\theta_1 | \mathbf{x}), p(\theta_2 | \mathbf{x}), p(\theta_3, \theta_4 | \mathbf{x})$$

Does **not** estimate

$$p(\theta_1, \theta_2 | \mathbf{x}), p(\theta_1, \theta_2, \theta_3 | \mathbf{x}), \dots$$

Instead of estimating all parameters...

Instead of estimating all parameters...

... we can cherry-pick what we care about

Instead of estimating all parameters...

... we can cherry-pick what we care about

Much more flexible much more efficient!

MNRE has been successfully applied in many contexts:

- Strong lensing [Montel+ 22]
- **Stellar Streams** [Alvey+ 23]
- **Gravitational Waves** [Bhardwaj+ 23] [Alvey+ 23]
- **CMB** [Cole + 22]
- 21-cm [Saxena+ 23]

MNRE has been successfully applied in many contexts:

- Strong lensing [Montel+ 22]
- **Stellar Streams** [Alvey+ 23]
- **Gravitational Waves** [Bhardwaj+ 23] [Alvey+ 23]
- **CMB** [Cole + 22]
- 21-cm [Saxena+ 23]

Our goal: apply MNRE to Stage IV photometric observables

I. Why we need to go beyond MCMC

II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to **Stage IV** photometric observables

3x2pt photometric probes

Summarise maps of galaxy positions/shapes using three 2-point statistics (3x2pt) measured at 10 tomographic redshift bins

3x2pt photometric probes

Summarise maps of galaxy positions/shapes using three 2-point statistics (3x2pt) measured at 10 tomographic redshift bins

...described by angular power spectra $C_{ij}^{XY}(\ell) = \int dz \ W_i^X(z) W_j^Y(z) \ P_m(k_\ell, z)$

1. Simulator

1. Simulator

We generate 50k realisations of 3x2pt spectra with gaussian noise

$$\hat{C}_{ij}^{AB}(\mathcal{E}) = C_{ij}^{AB}(\mathcal{E}) + n_{ij}^{AB}(\mathcal{E})$$

$$\mathcal{N}(0, \mathbf{C})$$

1. Simulator

We generate 50k realisations of 3x2pt spectra with gaussian noise

$$\hat{C}_{ij}^{AB}(\ell) = C_{ij}^{AB}(\ell) + n_{ij}^{AB}(\ell)$$

$$\mathcal{N}(0, \mathbb{C})$$

12 nuisance params

$$\{A_{\text{IA}}, \eta_{\text{IA}}, b_1, \dots, b_{10}\}$$

1. Simulator

We generate 50k realisations of 3x2pt spectra with gaussian noise

$$\hat{C}_{ij}^{AB}(\mathcal{E}) = C_{ij}^{AB}(\mathcal{E}) + n_{ij}^{AB}(\mathcal{E})$$

$$\mathcal{N}(0, \mathbf{C})$$

12 nuisance params

$$\{A_{\mathrm{IA}}, \eta_{\mathrm{IA}}, b_1, \dots, b_{10}\}$$

2. Network

We do a **pre-compression** of data using **PCA** and parameter-specific data summaries

Forecast ACDM posteriors

With MNRE, we can also test models with highly non-Gaussian posteriors

With MNRE, we can also test models with highly non-Gaussian posteriors

As an example, we consider a model of CDM decaying to DR + WDM (proposed to explain the S_8 tension)

[Abellan+ 21]

[Bucko+ 23]

Decay rate Γ WDM velocity kick \mathcal{V}_k

Forecast constraints on decaying DM

Forecast constraints on decaying DM

Forecast constraints on decaying DM

Next steps

Use simulator based on CLOE (many more nuisance params.)

Next steps

Use simulator based on CLOE (many more nuisance params.)

Consider other observables, like spectroscopic galaxy clustering

Next steps

Use simulator based on CLOE (many more nuisance params.)

Consider other observables, like spectroscopic galaxy clustering

Perform field-level inference to extract all possible information

[<u>Lemos+ 23</u>]

[Jeffrey+ 24]

Euclid's view of the Perseus cluster of galaxies

Conclusions

To learn as much as we can about the dark sector from future data, we need to go beyond traditional methods

Euclid's view of the Perseus cluster of galaxies

Conclusions

To learn as much as we can about the dark sector from future data, we need to go beyond traditional methods

MNRE provides a powerful framework to constrain ACDM and its extensions with next-generation LSS surveys (like Euclid)

Conclusions

To learn as much as we can about the dark sector from future data, we need to go beyond traditional methods

MNRE provides a powerful framework to constrain ΛCDM and its extensions with next-generation LSS surveys (like Euclid)

g.francoabellan@uva.nl

BACK-UP

Strategy: train a neural network $d_{\phi}(\mathbf{x}, \boldsymbol{\theta}) \in [0,1]$ as a binary classifier, so that

$$d_{\phi}(\mathbf{x}, \boldsymbol{\theta}) \simeq 1 \quad \text{if} \quad (\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})$$

$$d_{\phi}(\mathbf{x}, \boldsymbol{\theta}) \simeq 0 \quad \text{if} \quad (\mathbf{x}, \boldsymbol{\theta}) \sim p(\mathbf{x})p(\boldsymbol{\theta})$$

Note: Φ denotes all the network parameters

We have to minimise a loss function w.r.t. the network params. Φ

$$L[d_{\phi}(\mathbf{x}, \boldsymbol{\theta})] = -\int d\mathbf{x} d\boldsymbol{\theta} \left[p(\mathbf{x}, \boldsymbol{\theta}) \ln(d_{\phi}(\mathbf{x}, \boldsymbol{\theta})) + p(\mathbf{x}) p(\boldsymbol{\theta}) \ln(1 - d_{\phi}(\mathbf{x}, \boldsymbol{\theta})) \right]$$

which yields

$$d_{\phi}(\mathbf{x}, \boldsymbol{\theta}) \simeq \frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x}, \boldsymbol{\theta}) + p(\mathbf{x})p(\boldsymbol{\theta})} = \frac{r(\mathbf{x}; \boldsymbol{\theta})}{r(\mathbf{x}; \boldsymbol{\theta}) + 1}$$

But can we trust our results?

...even if NNs are often seen as "black boxes", it is possible to perform statistical consistency tests which are impossible with MCMC

Trained networks can estimate effortlessly the posteriors for all simulated observations

Ex: Is the estimated 68.27% interval covering the ground truth in ~68% of the cases?

Ex: Is the estimated 68.27% interval covering the ground truth in ~68% of the cases?

We can empirically estimate the Bayesian coverage

Coverage test for Euclid 3x2pt

Empirical coverage and confidence level match to excellent precision!

Network architecture

Posteriors for nuisance parameters

Another big advantage of MNRE: simulation re-use

It is interesting to see how constraints change with different data combinations

It is interesting to see how constraints change with different data combinations

BUT

with MCMC, one has to restart chains for each experimental configuration

It is interesting to see how constraints change with different data combinations

BUT

with MCMC, one has to restart chains for each experimental configuration

In MNRE it is possible to re-use simulations for different data combinations

The idea is to simulate all the data at once, and then train different inference networks for different data combinations

The idea is to simulate all the data at once, and then train different inference networks for different data combinations

Ex: Planck+BAO

