Probing the primordial power spectrum
with dark matter minihalos and the CMB
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The primordial power spectrum
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The primordial power spectrum

Many inflation models

predict enhancements

[Clesse+15, Byrnes+19]
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The primordial power spectrum

Primordial Black Hole
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The primordial power spectrum




The primordial power spectrum

What happens
in between?
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Moderate enhancements can produce
Ultra Compact Mini Halos (UCMHs)

[Delos+18]
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Moderate enhancements can produce
Ultra Compact Mini Halos (UCMHs)

@ Much earlier collapse (z ~ 102 - 103)

@9 Potentially much stronger constraints
on the small-scale Pz (k) than PBHs

[Delos+18]



The presence of minihalos has been probed by various methods

- Y-ray fluxes [Bringmann+11, Delos+18]
@) CMB anisotropies [Kawasaki+21]

- 21cm signal [Yang+16, Furugori+20]

@ Microlensing [Erickcek+12]

) Free-free emission [Abe+21]
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If dark matter (DM) self-annihilates, minihalos

can significantly
leaving an imprint on the CMB




@ Deposited energy into the plasma per volume and time
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@ Deposited energy into the plasma per volume and time

dE
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Cosmological boost factor Annihilation parameter
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€ Inthe framework of the halo model

1 J'M dn(M | z)
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€ Inthe framework of the halo model

1 J'M dn(M | z)
2 dM
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Halo mass function

B(z) =

Bh(zf(M)a Z) dM

Depends on Py, (k)



€ Inthe framework of the halo model

(Pm) J M dM B, (z¢{(M), z) dM
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Halo mass function 1-halo boost

B(z) =

Depends on Py, (k) Depends on density profile 2,(7)
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Halo mass function 1-halo boost
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Depends on Py, (k) Depends on density profile 2,(7)

@ New formalism (based on ext. Press-Schechter) to account for
effects of halo mergers



€ Inthe framework of the halo model

B(z) = — JMdn(MlZ) B, (z{(M).2) dM
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Halo mass function 1-halo boost

Depends on Py, (k) Depends on density profile 2,(7)

@ New formalism (based on ext. Press-Schechter) to account for
effects of halo mergers

@ For the first time, considered both s-wave and p-wave annihilations



Instructions

RECIPE

to get the constraints

Ingredients

Modified version of ExoCLASS
[Stocker+18]

Planck legacy data
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RECIPE

to get the constraints

Ingredients

@9 Modified version of ExoCLASS

@ Planck legacy data

[Stocker+18]

Instructions

1) Consider a spike at large k

k

ns—1
—) A bk — k)
Ko

Pr(k) = A, (

71 Compute boost factor and the DM
annihil. signal in the CMB (ExoCLASS)

€= Compare prediction against Planck data

(77 Obtain constraints on A, vs. k,
(for a fiducial param. Pan, & (ov)/mpy )




RESULTS
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Not the tightest minihalo
constraint, but CMB is

the “cleanest” probe
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Conclusions THANKS FOR
YOUR ATTENTION

g.francoabellan@uva.nl

@ Robust CMB bounds on small-scale Pz (k) using
both s-wave and p-wave DM annihil. in minihalos

¢ New formalism that allows to better take into account
effects of halo mergers

@ Minihalos extend observable window of inflation in presence
of CDM, coupling two key problems in cosmology
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RESULTS
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@ Accounting for mergers leads
to slightly weaker bounds

@ Expected to be much more
relevant for low-z probes
(e.g. 21 cm)
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RESULTS

@ So far, we only !o?kefj at (6v) =06y + o v2+...
s-wave DM annihilations s-wave  p-wave

@ p-wave terms might be non-negligible (velocity is enhanced in
virialised structures). In addition, bounds on o, are very weak

@ First calculation of p-wave boost factor in presence of UCMHSs
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RESULTS

LOgloA*

—0.20 1

—5.50 1

—5.751

—6.00 -

—0.29 1

—6.50 1

—6.75+

X — bb
m, = 1 TeV

s-wave, og = 3 X 1

—— p-wave, o7 = 107" em

020 ¢

3

S

3

m

—1

S

Excluded by CMB anisotropies

—1

—'7.00

1 )

3

4 5 6

Log;o(ks«/Mpc™)

@ p-wave constraints are
competitive at small k

) Relevant for models that
predict vanishing s-wave
terms
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Constraints for different DM masses and annihil. channels
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Prior range for the amplitude and location of the spike

_1 Typical value for the
0 < Loglo (k’*/MpC ) <7 free-streaming scale of WIMPs

— 8 ff;; :];J()gg;l()./zlﬁk :fE; —4

! logyo Z¢ (M)
Larger amplitudes may [3.5

lead to PBH formation

3.0
or minihalo formation -
during the radiation era |

- 2.0
- 1.5
106
- 1.0
1077 3
Bl fopp > 1071 - 0.5
1078 { Il fppy > 10717
(M) > Zeq
10~9

10t 103 10° 107 10°
k. [Mpc™]



