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Moderate enhancements can produce

Ultra Compact Mini Halos (UCMHs)

[Delos+18]
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Potentially much stronger constraints

on the small-scale              than PBHs
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γ-ray fluxes

CMB anisotropies

Microlensing 

21cm signal 

Free-free emission

The presence of minihalos has been probed by various methods

[Bringmann+11, Delos+18]

[Kawasaki+21]

[Yang+16, Furugori+20]

[Erickcek+12]

[Abe+21]
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γ-ray fluxes

Microlensing 

21cm signal 

Free-free emission
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If dark matter (DM) self-annihilates, minihalos 

can significantly boost the DM annihilation 
signal, leaving an imprint on the CMB
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Deposited energy into the plasma per volume and time 

dE
dVdt

DM

(z) = (1+B(z)) ⟨ρ0
DM⟩2 (1 + z)6 f(z) pann
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Deposited energy into the plasma per volume and time 

Cosmological boost factor

B(z) ≡
⟨ρ2

DM⟩
⟨ρDM⟩2

− 1

Annihilation parameter
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In the framework of the halo model

ρh(r)

B(z) =
1

⟨ρ0
m⟩ ∫ M

dn(M |z)
dM

Bh(zf(M), z) dM
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In the framework of the halo model

Halo mass function
Depends on ρh(r)

B(z) =
1

⟨ρ0
m⟩ ∫ M

dn(M |z)
dM

Bh(zf(M), z) dM
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In the framework of the halo model

B(z) =
1

⟨ρ0
m⟩ ∫ M

dn(M |z)
dM

Bh(zf(M), z) dM

Halo mass function
Depends on

1-halo boost 
Depends on density profile ρh(r)

New formalism (based on ext. Press-Schechter) to account for 

effects of halo mergers 

For the first time, considered both s-wave and p-wave annihilations
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to get the constraints
RECIPE

Ingredients

Instructions

Modified version of ExoCLASS

Planck legacy data

[Stocker+18]
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to get the constraints
RECIPE

Ingredients

Instructions

Modified version of ExoCLASS

Planck legacy data

Consider a spike at large k1.

2. Compute boost factor and the DM
annihil. signal in the CMB (ExoCLASS)

3. Compare prediction against Planck data

4. Obtain constraints on
(for a fiducial param.                              )pann ∝ ⟨σv⟩/mDM

[Stocker+18]
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RESULTS
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Much stronger bounds that
those from PBHs or FIRAS
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Not the tightest minihalo
constraint, but CMB is 
the ‘’cleanest’’ probe
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Conclusions

Robust CMB bounds on small-scale               using 

both s-wave and p-wave DM annihil. in minihalos

New formalism that allows to better take into account

effects of halo mergers 

Minihalos extend observable window of inflation in presence

of CDM, coupling two key problems in cosmology

   THANKS  FOR 

YOUR  ATTENTION
g.francoabellan@uva.nl
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BACK-UP
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RESULTS

With mergers
(UCMH+NFW)

No mergers
(Only UCMH)

Accounting for mergers leads 
to slightly weaker bounds

Expected to be much more

relevant for low-z probes

(e.g. 21 cm)
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RESULTS

So far, we only looked at 

s-wave DM annihilations

⟨σv⟩ = σ0 + σ1v2 + . . .
s-wave p-wave

p-wave terms might be non-negligible (velocity is enhanced in 
virialised structures). In addition, bounds on σ1 are very weak

First calculation of p-wave boost factor in presence of UCMHs
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RESULTS
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p-wave constraints are 
competitive at small k

Relevant for models that 
predict vanishing s-wave 
terms
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Constraints for different DM masses and  annihil. channels
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Prior range for the amplitude and location of the spike

Typical value for the 

free-streaming scale of WIMPs

Larger amplitudes may 
lead to PBH formation 

or minihalo formation 

during the radiation era
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