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However, the nature

of the dark sector
remains unknown
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In addition, discrepancies have emerged
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My work so far...

Decaying DM

[GFA, Murgia+ 20]
[GFA, Murgia+ 21]
[Simon, GFA+ 22]
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https://arxiv.org/abs/2102.12498
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Decaying DM Early Modified Gravity
[GFA, Braglia+ 23]
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[GFA, Murgia+ 21] Early Dark Energy
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My work so far...

Decaying DM Early Modified Gravity  Interacting Stepped DR
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Still no smoking-gun signature of new physics...



Still no smoking-gun signature of new physics...

...i1s there hope to establish a new concordance model?



Next-generation cosmological data is becoming available

...................................................................................................................................................................................................
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high-quality data

extremely challenging
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Machine learning is
having a strong impact
in cosmology
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Two main approaches in ML
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Two main approaches in ML

to achieve ultra-fast evaluations to improve the sampling in high-
of cosmological observables dimensional parameter spaces

This talk
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Bayesian inference

Likelihood
Posterior - Prior
p(x)
Evidence

X : Data
0 : Parameters




Likelihood

Metropolis-Hastings algorithm

) Traditional likelihood-based methods
(MCMC, Nested Sampling,...) allow to get
samples from the full joint posterior

0~ pl|x), 0 € R”
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Likelihood

Metropolis-Hastings algorithm

) Traditional likelihood-based methods
(MCMC, Nested Sampling,...) allow to get
samples from the full joint posterior

0~ pl|x), 0 € R”

) Then we marginalise to get
posteriors of interest
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The curse of dimensionality

These methods scale poorly with the
dimensionality of the parameter space
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https://arxiv.org/abs/1506.00171

The curse of dimensionality
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The curse of dimensionality

Marginal posterior Joint posterior

P (Qwaldo |x0) = dHPierredeTheod‘gJulien T deHugo P (HWaldo’ HPierreﬂ HTheo’ eJuliem Tt 6’Hug0 ‘XO)
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Are there methods to overcome this problem?
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Are there methods to overcome this problem?

Can machine learning be helpful?
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ANEWHOPE

MNRE = Marginal Neural Ratio Estimation
Implemented in Swyft* [Miller+ 20]

* Stop Wasting Your Precious Time

19


https://github.com/undark-lab/swyft
https://arxiv.org/abs/2011.13951

l. Why we need to go beyond MCMC

ll. Our new approach: Marginal Neural Ratio Estimation J

I1l. Applying MNRE to Euclid observables
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Marginal Neural Ratio Estimation

) Simulation-based inference
(or likelihood-free inference)
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Marginal Neural Ratio Estimation

) Simulation-based inference
(or likelihood-free inference)

l

Stochastic simulator that maps from
model parameters 0 to data x

X ~ p(x|@) (implicit likelihood)

21



We can simulate N samples that can be used as training data for a neural network
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We can simulate N samples that can be used as training data for a neural network

(x,00),x%,0%),...,xV), ™))

CMB simulator
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https://arxiv.org/abs/2111.08030

Marginal Neural Ratio Estimation

¢ ) Neural Ratio Estimation

Instead of directly estimating the
posterior, estimate:
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Marginal Neural Ratio Estimation

¢ ) Neural Ratio Estimation

Instead of directly estimating the
posterior, estimate:

It's easy to show that:

P(x,0) _ p(@|x) (posterior-to-
p(xX)p(0) B p(0) prior ratio)

23



0 ~ p(ﬂ) Draw labels (cat, dog)

x ~ p(x) Drawimages

24



6 ~ p(@) Draw labels (cat, dog)

X ~ p(x) Drawimages

(x,0) ~ p(x,0)  (jointly drawn)

24



6 ~ p(@) Draw labels (cat, dog)

x ~ p(x) Drawimages

(x,0) ~ p(x,0)  (jointly drawn)

(x,0) ~ px)p(@) (marginally drawn)

Cat

24
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x ~ p(x) Drawimages

(jointly drawn) (x,0) ~ p(x)p(@) (marginally drawn)
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Given some (x, 6) pair, are they drawn jointly or marginally?
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6 ~ p(@) Draw labels (cat, dog)

x ~ p(x) Drawimages

(jointly drawn) (x,0) ~ p(x)p(@) (marginally drawn)

Cat

Given some (x, 6) pair, are they drawn jointly or marginally?

binary classification problem

24



Strategy: train a neural network 4,(x,0) € [0,1] as a binary classifier,
so that

& d¢(X, 0)~1 if (x,0)~ px,0) =px|0)p)

@ d,x,0)~0 if (x,0)~ p(x)p©6)

Note: ® denotes all the network parameters




We have to minimise a loss function w.r.t. the network params. ©

Lld,(x,0)] = - dedﬂ P(x,O)In(d,(x,0)) + p)p@)In(1 — d (x.0))

which yields

p(x,0) _ r(x;0)
p(x,0) +px)p@) r(x:0)+1

dy(X,0) ~




Marginal Neural Ratio Estimation

¢ Marginal inference

We can directly target marginal
posteriors of interest, and forget
about the rest

27
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https://arxiv.org/abs/2111.08030
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Instead of estimating all parameters...
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Instead of estimating all parameters... ... we can cherry-pick what we care about
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Instead of estimating all parameters...

0

N\

O O

O O
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0

... we can cherry-pick what we care about

=]

Parameter 1

Parameters
1 and 10

Parameter 10

Any other
combination

Much more flexible

much more efficient!
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But can we trust our results?

o
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But can we trust our results?

o

...even if NNs are often seen as "black boxes”, it is possible to perform
statistical consistency tests which are impossible with MCMC

30



Exploit MNRE’s local amortization:

p(0]x,)

estimates the posterior for
one single observation

MNRE with swyft

p(f|x) Vx ~ p(x)

simultaneously estimates the posteriors
for all simulated observations

Cole+ 22
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We can empirically estimate the Bayesian coverage

— 95.45% interval
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We can empirically estimate the Bayesian coverage
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MNRE has been successfully applied in many contexts:

@ Strong lensing [Montel+ 22]

) Stellar Streams [Alvey+ 23]

€ Gravitational Waves [Bhardwaj+ 23] [Alvey+ 23]

@ CMB [Cole+ 22]

) 21-cm [Saxena+ 23]

33
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MNRE has been successfully applied in many contexts:

@ Strong lensing [Montel+ 22]

) Stellar Streams [Alvey+ 23]

€ Gravitational Waves [Bhardwaj+ 23] [Alvey+ 23]

) CMB |[Cole+22]

) 21-cm [Saxena+ 23]

apply MNRE to Euelid primary observables

33
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l. Why we need to go beyond MCMC

ll. Our new approach: Marginal Neural Ratio Estimation

l1l. Applying MNRE to Euelid observables J
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[ESA’s Euclid space satellite]

€ OnJuly1, Euclid was launched to L2
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[ESA’s Euclid space satellite]

€ OnJuly1, Euclid was launched to L2

@ Over the next 6 years, Euclid will
measure the shapes and redshifts of

billions of galaxies, across ~1/3 of
the sky
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[ESA’s Euclid space satellite]

€ OnJuly1, Euclid was launched to L2

@ Over the next 6 years, Euclid will
measure the shapes and redshifts of

billions of galaxies, across ~1/3 of
the sky

€ First public data expected in 2025

35



Which are the Euclid primary observables?

Background galaxies
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Which are the Euclid primary observables?




Which are the Euclid primary observables?
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Which are the Euclid primary observables?

2-point function

Void Size function




Which are the Euclid primary observables?

2-point function /

Void Size function




Summarise maps of positions/shapes
using three 2-point statistics (3x2pt):

@) Cosmic Shear ”
@ Galaxy clustering O----0

@ Galaxy-Galaxy lensing @ ---- ’
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Summarise maps of positions/shapes
using three 2-point statistics (3x2pt):

@) Cosmic Shear ”
@ Galaxy clustering O----0

@ Galaxy-Galaxy lensing @ ---- ’

... measured for different
tomographic redshift bins
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Summarise maps of positions/shapes
using three 2-point statistics (3x2pt):

@ Cosmic Shear ”
@ Galaxy clustering o----0

@ Galaxy-Galaxy lensing @ ---- ’

... measured for different
tomographic redshift bins

Note: We consider only photometric redshifts, but Euclid will also
create a spectroscopic survey

38



€ 3x2pt statistics described by power spectra

C,;( ") = sz VV',X(Z)W}Y (z) P, (k,,2)

Window Matter power
functions spectrum

39



) 3x2pt statistics described by power spectra Ex:

GCph WL

ng(f ) = sz WlX(z)W}Y (2) P, (k,,2) |

Window Matter power
functions spectrum

1071 4 +

39




Ex:

) 3x2pt statistics described by power spectra

Cyj (£) = sz Wi QW) P, (k. 2)

Window Matter power
functions spectrum

€ For 10 redshift binsuptoz=3

+200 independent spectra!

39




Two main ingredients:
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Two main ingredients:

€ Simulator of 3x2pt statistics, based on a simplified
Euclid likelihood (gaussian, 7 nuisance params)
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Two main ingredients:

€ Simulator of 3x2pt statistics, based on a simplified
Euclid likelihood (gaussian, 7 nuisance params)

€ Network: Linear map that compresses all spectra into
a few features

40



Results

Mock data analysis

on ACDM model
(5 cosmo params)

41



Results

Mock data analysis
on ACDM model
(5 cosmo params)

In(10'°4))

A PN N =

e M CMC (~5 days)

== MNRE (~2 hours)

o

65

70 15 20 25 3.0 0.12 014094 096  0.98 3.0 3.1
H, 1000y, Ocdm n; In(10'°A))
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Results

e M CMC (~5 days)
== MNRE (~2 hours)

Mock data analysis
on ACDM model
(5 cosmo params)

Dramatic reduction in

B
I/

15 2.0 25 3.0 0.12 014094 096  0.98 3.0 3]
1000y, Ocdm ng In(10'°A))

In(10'°A))

$ o | / computational time!




Next steps

@ Use more realistic likelihood/simulator (many more nuisance pars.)
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Next steps

@ Use more realistic likelihood/simulator (many more nuisance pars.)

@ Consider various ACDM extensions (i.e. decaying DM)

—2.5 —2.0 —1.5
logo(I" X Gyr)
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Next steps

@ Use more realistic likelihood/simulator (many more nuisance pars.)

@ Consider various ACDM extensions (i.e. decaying DM)

—2.5 —2.0 —1.5
logo(I" X Gyr)

@ Apply MNRE to a very wide variety of cosmic data

42



; "Euclid's view of the Perseus cluster of galaxies

Conclusions

€ ) Tolearn as much as we can about the dark
sector from future data, we need to go
beyond traditional methods such as MCMC

Using MNRE, we can analyse Euclid data (and
potentially any other cosmic data) in a much
more efficient and flexible way than MCMC
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; "Euclid's view of the Perseus cluster of galaxies

Conclusions

€ ) Tolearn as much as we can about the dark
sector from future data, we need to go
beyond traditional methods such as MCMC

Using MNRE, we can analyse Euclid data (and
potentially any other cosmic data) in a much
more efficient and flexible way than MCMC

THANKS FOR YOUR ATTENTION

g.francoabellan@uva.nl
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Another big advantage
of MNRE: simulation re-use
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It 1s interesting to see
how constraints
change with different
data combinations
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It 1s interesting to see
how constraints
change with different
data combinations

BUT

with MCMC, one has to
for each

experimental configuration
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It 1s interesting to see
how constraints
change with different
data combinations

BUT

with MCMC, one has to
for each

experimental configuration

In MNRE it is possible
to re-use simulations

for different data
combinations

46



The idea is to simulate all the data at once, and then train different
inference networks for different data combinations
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The idea is to simulate all the data at once, and then train different

inference networks for different data combinations

Planck+BAO
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B CMB, 104 simulations

B CMB & BAO, zcro simulations
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