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Concordance ΛCDM model of cosmology:

ωc ωb H0

Only 6 free 

parameters:

As ns τreio
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dark energy?

Inflation?

However, the nature 

of the dark sector 

remains unknown

Horndeski
Massive gravity

multi-field

single-field
warm inflation

dark matter?

WIMPs

sterile neutrinos

axions PBHs

Quintessence
Λ
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In addition, discrepancies have emerged 
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In addition, discrepancies have emerged 

S8 tension (2-3σ)

65.0 67.5 70.0 72.5 75.0 77.5 80.0
H0 [km/s/Mpc]

Surface Brightness Fluctuations
73.3±2.5

Tully-Fisher Relation
76.0±2.6

Masers
73.9±3.0

H0LICOW
73.3±1.7

SNIa+TRGB (CCHP)
69.8±1.9

SNIa+TRGB (SH0ES)
72.4±2.0

SNIa+Cepheids (SH0ES)
73.0±1.0

ACT 2020
67.9±1.5

BAO+BBN
68.3±1.2

Planck 2018
67.3±0.6

Indirect
measurements

Direct
measurements

flat LCDMH0 tension (5-6σ)



5

dark energy?

Inflation?

Horndeski

Quintessence
Massive gravity

Λ

multi-field

single-field
warm inflation

Cosmic tensions can 

 shed some light on the 
mysterious dark sector

dark matter?
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ΛCDM extensions

Cosmic tensions

My work so far…

H0  and  S8

Interacting Stepped DR
[Schöneberg & GFA 22]
[Schöneberg, GFA+ 23]

Inflation

Ultracompact minihalos
[GFA & Facchinetti 23]

S8

Decaying DM
[GFA, Murgia+ 20]

[GFA, Murgia+ 21]
[Simon, GFA+ 22]

H0

Early Modified Gravity 
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Early Dark Energy 
[Murgia, GFA+ 20]
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ΛCDM extensions

Cosmic tensions

My work so far…

H0  and  S8

Interacting Stepped DR
[Schöneberg & GFA 22]
[Schöneberg, GFA+ 23]

Inflation

Ultracompact minihalos
[GFA & Facchinetti 23]

Neutrino mass

Decaying neutrinos
[GFA, Chacko+ 21]

S8

Decaying DM
[GFA, Murgia+ 20]

[GFA, Murgia+ 21]
[Simon, GFA+ 22]

H0

Early Modified Gravity 
[GFA, Braglia+ 23]

Early Dark Energy 
[Murgia, GFA+ 20]

https://arxiv.org/abs/2206.11276
https://arxiv.org/abs/2306.12469
https://arxiv.org/abs/2304.02996
https://arxiv.org/abs/2112.13862
https://arxiv.org/abs/2008.09615
https://arxiv.org/abs/2203.07440
https://arxiv.org/abs/2102.12498
https://arxiv.org/abs/2009.10733
https://arxiv.org/abs/2308.12345
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Still no smoking-gun signature of new physics…
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Still no smoking-gun signature of new physics…

…is there hope to establish a new concordance model?



9

Next-generation cosmological data is becoming available
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    Analysing these high-quality data will be 

extremely challenging with traditional methods
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Machine learning is 
having a strong impact

in cosmology
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Two main approaches in ML

This talk

Emulators
to achieve ultra-fast evaluations 
of cosmological observables

New statistical methods
to improve the sampling in high-
dimensional parameter spaces
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Bayesian inference

Posterior
Likelihood

Evidence

p(θ |x) =
p(x |θ)

p(x)
p(θ)
Prior

Parameters
Data

θ :
x :
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θ ∼ p(θ |x), θ ∈ ℝD

Metropolis-Hastings algorithm

Traditional likelihood-based methods 
(MCMC, Nested Sampling,…) allow to get 
samples from the full joint posterior 
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θ ∼ p(θ |x), θ ∈ ℝD

Metropolis-Hastings algorithm

Traditional likelihood-based methods 
(MCMC, Nested Sampling,…) allow to get 
samples from the full joint posterior 

Then we marginalise to get 

posteriors of interest 
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The curse of dimensionality

These methods scale poorly with the 
dimensionality of the parameter space

Handley+ 15

https://arxiv.org/abs/1506.00171
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The curse of dimensionality

These methods scale poorly with the 
dimensionality of the parameter space

Handley+ 15

Ex: For Euclid, we expect to have 

+100 nuisance parameters

Weeks…

https://arxiv.org/abs/1506.00171


17

The curse of dimensionality

Where is Waldo?

P(θwaldo |x0) = ∫ dθPierredθTheodθJulien . . . dθHugo P(θWaldo, θPierre, θTheo, θJulien, . . . , θHugo |x0)

Marginal posterior Joint posterior
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Are there methods to overcome this problem?
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Are there methods to overcome this problem?

Can machine learning be helpful?



19

[Miller+ 20]
MNRE = Marginal Neural Ratio Estimation
Implemented in Swyf* 

* Stop Wasting Your Precious Time

https://github.com/undark-lab/swyft
https://arxiv.org/abs/2011.13951
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I. Why we need to go beyond MCMC

II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to Euclid observables
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Marginal Neural Ratio Estimation

Simulation-based inference 

(or likelihood-free inference)
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Marginal Neural Ratio Estimation

Simulation-based inference 

(or likelihood-free inference)

Stochastic simulator that maps from 
model parameters θ to data x

x ∼ p(x |θ) (implicit likelihood)
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We can simulate N samples that can be used as training data for a neural network

{(x(1), θ(1)), (x(2), θ(2)), . . . , (x(N), θ(N))}
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We can simulate N samples that can be used as training data for a neural network

{(x(1), θ(1)), (x(2), θ(2)), . . . , (x(N), θ(N))}

Ex: CMB simulator 

Cole+ 22

θ → Cℓ(θ) → Cℓ(θ) + Nℓ

https://arxiv.org/abs/2111.08030
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Marginal Neural Ratio Estimation

Neural Ratio Estimation

r(x; θ) =
p(x, θ)

p(x)p(θ)

Instead of directly estimating the 
posterior, estimate:
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Marginal Neural Ratio Estimation

Neural Ratio Estimation

r(x; θ) =
p(x, θ)

p(x)p(θ)

Instead of directly estimating the 
posterior, estimate:

It’s easy to show that:

p(x, θ)
p(x)p(θ)

=
p(θ |x)

p(θ)
(posterior-to-
prior ratio)
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θ ∼ p(θ) Draw labels

x ∼ p(x) Draw images

(cat, dog)
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θ ∼ p(θ) Draw labels

x ∼ p(x) Draw images

(x, θ) ∼ p(x, θ) (jointly drawn)

Cat  Dog Dog

(cat, dog)

(x, θ) ∼ p(x)p(θ) (marginally drawn)

 DogCat Cat 

Given some (x, θ) pair, are they drawn jointly or marginally?

Rephrase inference as a binary classification problem
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Strategy: train a neural network                             as a binary classifier,

so that

dϕ(x, θ) ∈ [0,1]

(x, θ) ∼ p(x, θ) = p(x |θ)p(θ)

(x, θ) ∼ p(x)p(θ)

dϕ(x, θ) ≃ 1

dϕ(x, θ) ≃ 0

if

if

Note: Φ denotes all the network parameters
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We have to minimise a loss function w.r.t. the network params. Φ

L[dϕ(x, θ)] = − ∫ dxdθ [p(x, θ)ln(dϕ(x, θ)) + p(x)p(θ)ln(1 − dϕ(x, θ))]

which yields

dϕ(x, θ) ≃
p(x, θ)

p(x, θ) + p(x)p(θ)
=

r(x; θ)
r(x; θ) + 1
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Marginal Neural Ratio Estimation

Marginal inference

We can directly target marginal 
posteriors of interest, and forget 

about the rest
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Cole+ 22

r

https://arxiv.org/abs/2111.08030
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Cole+ 22

r

p(θ3, θ4 |x)

Estimates

Does not estimate

p(θ1 |x), p(θ2 |x),

p(θ1, θ2 |x), p(θ1, θ2, θ3 |x), . . .

https://arxiv.org/abs/2111.08030
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Instead of estimating all parameters…
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Instead of estimating all parameters… … we can cherry-pick what we care about

Parameter 1 Parameter 10

cParameters 

  1 and 10

cAny other

combination
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Much more flexible 
much more efficient!

Instead of estimating all parameters… … we can cherry-pick what we care about

Parameter 1 Parameter 10

cParameters 

  1 and 10

cAny other

combination
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But can we trust our results?
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But can we trust our results?

…even if NNs are often seen as ''black boxes’’, it is possible to perform 
statistical consistency tests which are impossible with MCMC
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Exploit MNRE’s local amortization:

Cole+ 22

https://arxiv.org/abs/2111.08030
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We can empirically estimate the Bayesian coverage

Cole+ 22

https://arxiv.org/abs/2111.08030
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We can empirically estimate the Bayesian coverage

Converged network Non-converged network

Cole+ 22

https://arxiv.org/abs/2111.08030
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MNRE has been successfully applied in many contexts:

Strong lensing

Stellar Streams

Gravitational Waves

CMB [Cole+ 22]

[Bhardwaj+ 23] [Alvey+ 23]

[Alvey+ 23]

[Montel+ 22]

21-cm [Saxena+ 23]

https://arxiv.org/abs/2205.09126
https://arxiv.org/abs/2111.08030
https://arxiv.org/abs/2303.07339
https://arxiv.org/abs/2304.02035
https://arxiv.org/abs/2308.06318
https://arxiv.org/abs/2304.02032
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MNRE has been successfully applied in many contexts:

Strong lensing

Stellar Streams

Gravitational Waves

CMB [Cole+ 22]

[Bhardwaj+ 23] [Alvey+ 23]

[Alvey+ 23]

[Montel+ 22]

21-cm [Saxena+ 23]

Our goal: apply MNRE to Euclid primary observables

https://arxiv.org/abs/2205.09126
https://arxiv.org/abs/2111.08030
https://arxiv.org/abs/2303.07339
https://arxiv.org/abs/2304.02035
https://arxiv.org/abs/2308.06318
https://arxiv.org/abs/2304.02032
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I. Why we need to go beyond MCMC

II. Our new approach: Marginal Neural Ratio Estimation

III. Applying MNRE to Euclid observables
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On July 1, Euclid was launched to L2

[ESA’s Euclid space satellite]

First public data expected in 2025

Over the next 6 years, Euclid will 
measure the shapes and redshifts of 
billions of galaxies, across ~1/3 of 
the sky
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Background galaxies

foreground 

galaxies 

(positions)

Lensed image

of background 
galaxies (shapes)

Which are the Euclid primary observables?
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Which are the Euclid primary observables?

2-point function

Void Size function

Halo mass function
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Summarise maps of positions/shapes

using three 2-point statistics (3x2pt):

Cosmic Shear

Galaxy clustering

Galaxy-Galaxy lensing
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… measured for different 

tomographic redshif bins

 

Summarise maps of positions/shapes

using three 2-point statistics (3x2pt):

Cosmic Shear

Galaxy clustering

Galaxy-Galaxy lensing

Note: We consider only photometric redshifts, but Euclid will also 

create a spectroscopic survey
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3x2pt statistics described by power spectra

CXY
ij (ℓ) = ∫ dz WX

i (z)WY
j (z) Pm(kℓ, z)

Matter power 
spectrum

Window 

functions
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3x2pt statistics described by power spectra

CXY
ij (ℓ) = ∫ dz WX

i (z)WY
j (z) Pm(kℓ, z)

Matter power 
spectrum

Window 

functions

Ex:

For 10 redshift bins up to z = 3               

+200 independent spectra!
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Two main ingredients:

Simulator of 3x2pt statistics, based on a simplified 
Euclid likelihood (gaussian, 7 nuisance params)
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Two main ingredients:

Simulator of 3x2pt statistics, based on a simplified 
Euclid likelihood (gaussian, 7 nuisance params)

Network: Linear map that compresses all spectra into 
a few features
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Results

Mock data analysis 
on ΛCDM model 

(5 cosmo params)
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Results

MCMC

MNRE (~2 hours)

(~5 days)Mock data analysis 
on ΛCDM model 

(5 cosmo params)

Dramatic reduction in 
computational time!
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Next steps

Use more realistic likelihood/simulator (many more nuisance pars.)
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Next steps

Use more realistic likelihood/simulator (many more nuisance pars.)

Apply MNRE to a very wide variety of cosmic data

Consider various ΛCDM extensions (i.e. decaying DM)
Preliminary
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Conclusions

To learn as much as we can about the dark 
sector from future data, we need to go 

beyond traditional methods such as MCMC

Using MNRE, we can analyse Euclid data (and 
potentially any other cosmic data) in a much 

more efficient and flexible way than MCMC


Euclid's view of the Perseus cluster of galaxies
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Conclusions

To learn as much as we can about the dark 
sector from future data, we need to go 

beyond traditional methods such as MCMC

Using MNRE, we can analyse Euclid data (and 
potentially any other cosmic data) in a much 

more efficient and flexible way than MCMC


THANKS FOR YOUR ATTENTION
g.francoabellan@uva.nl

Euclid's view of the Perseus cluster of galaxies
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BACK-UP
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Another big advantage 

of MNRE: simulation re-use
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It is interesting to see 
how constraints 
change with different 
data combinations 
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BUT
It is interesting to see 
how constraints 
change with different 
data combinations 

with MCMC, one has to 
restart chains for each 
experimental configuration

In MNRE it is possible 
to re-use simulations 
for different data 
combinations
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The idea is to simulate all the data at once, and then train different 
inference networks for different data combinations
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The idea is to simulate all the data at once, and then train different 
inference networks for different data combinations

Ex: Planck+BAO 

Cole+ 22

https://arxiv.org/abs/2111.08030

