

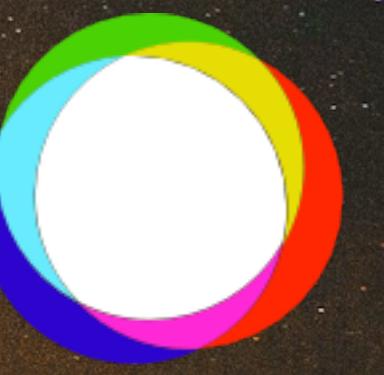
Deep learning the invisible universe

Guillermo Franco Abellán

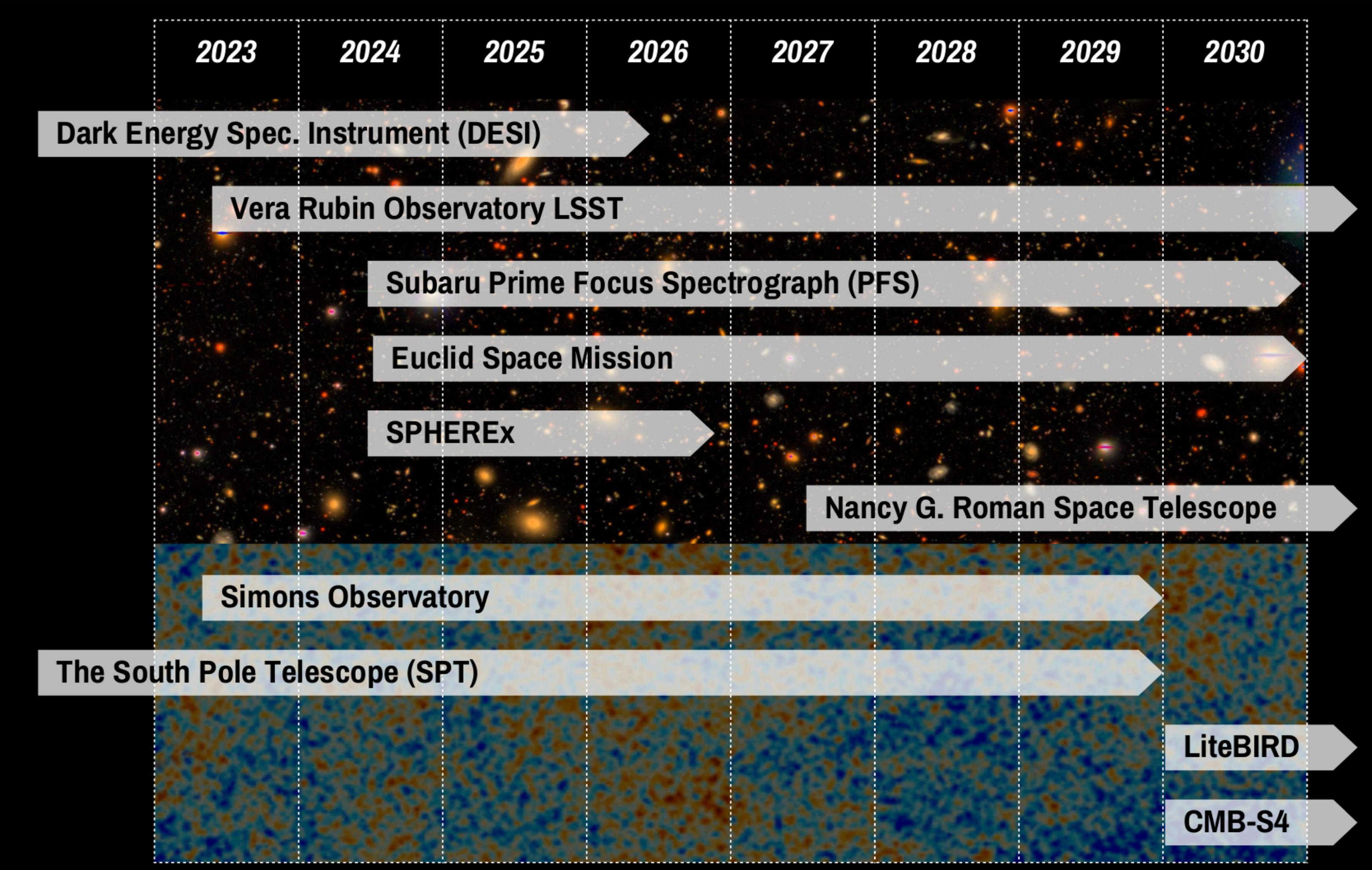
GRAPPA, University of Amsterdam

21st May 2025

CEICO Cosmology Seminar

GRAPPA 
GRavitation AstroParticle Physics Amsterdam

We are entering in the era of **ultra-high precision cosmology**

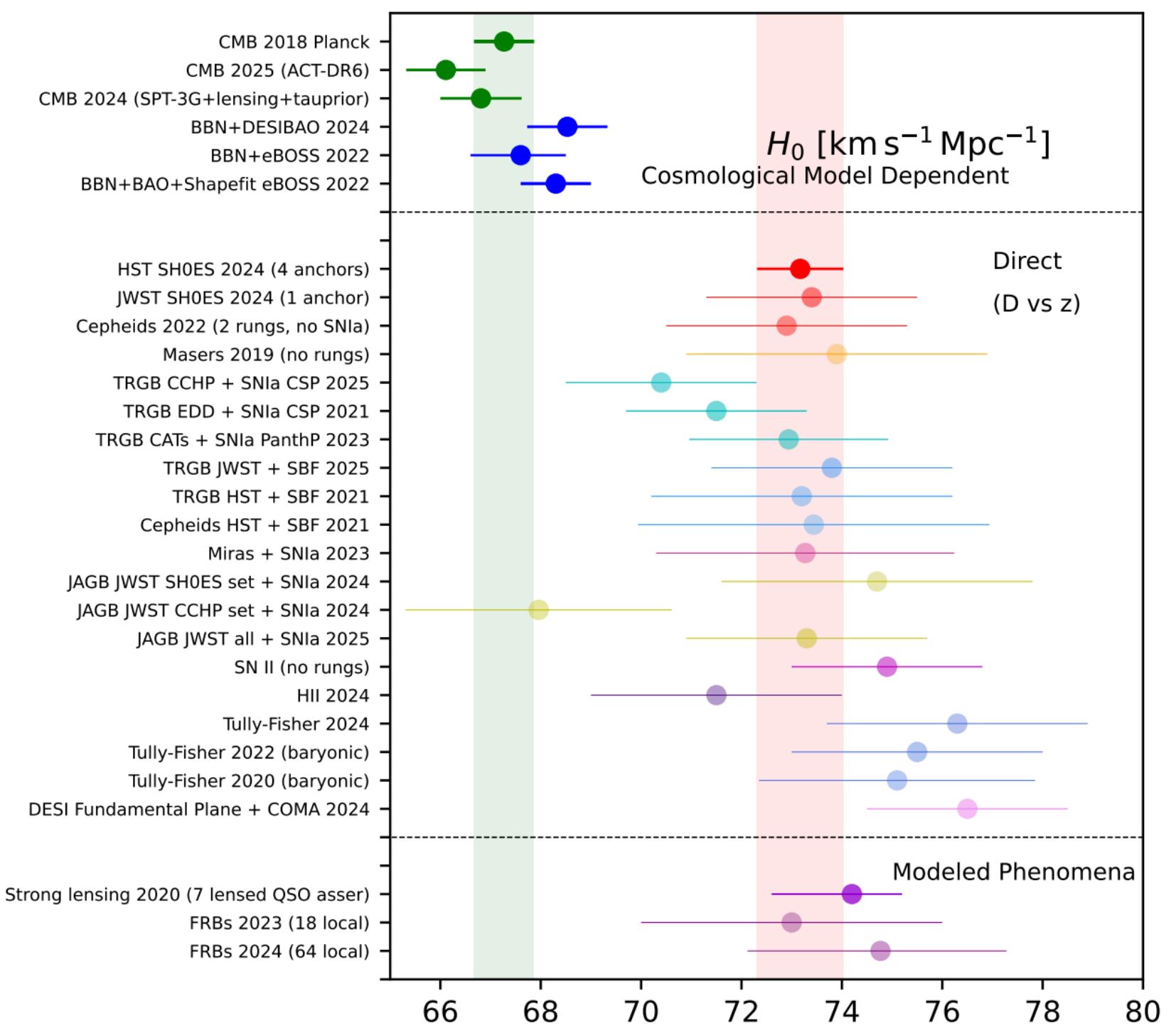


[Credit A. Bayer]

Various datasets point at **cracks in the Λ CDM model**

Various datasets point at **cracks in the Λ CDM model**

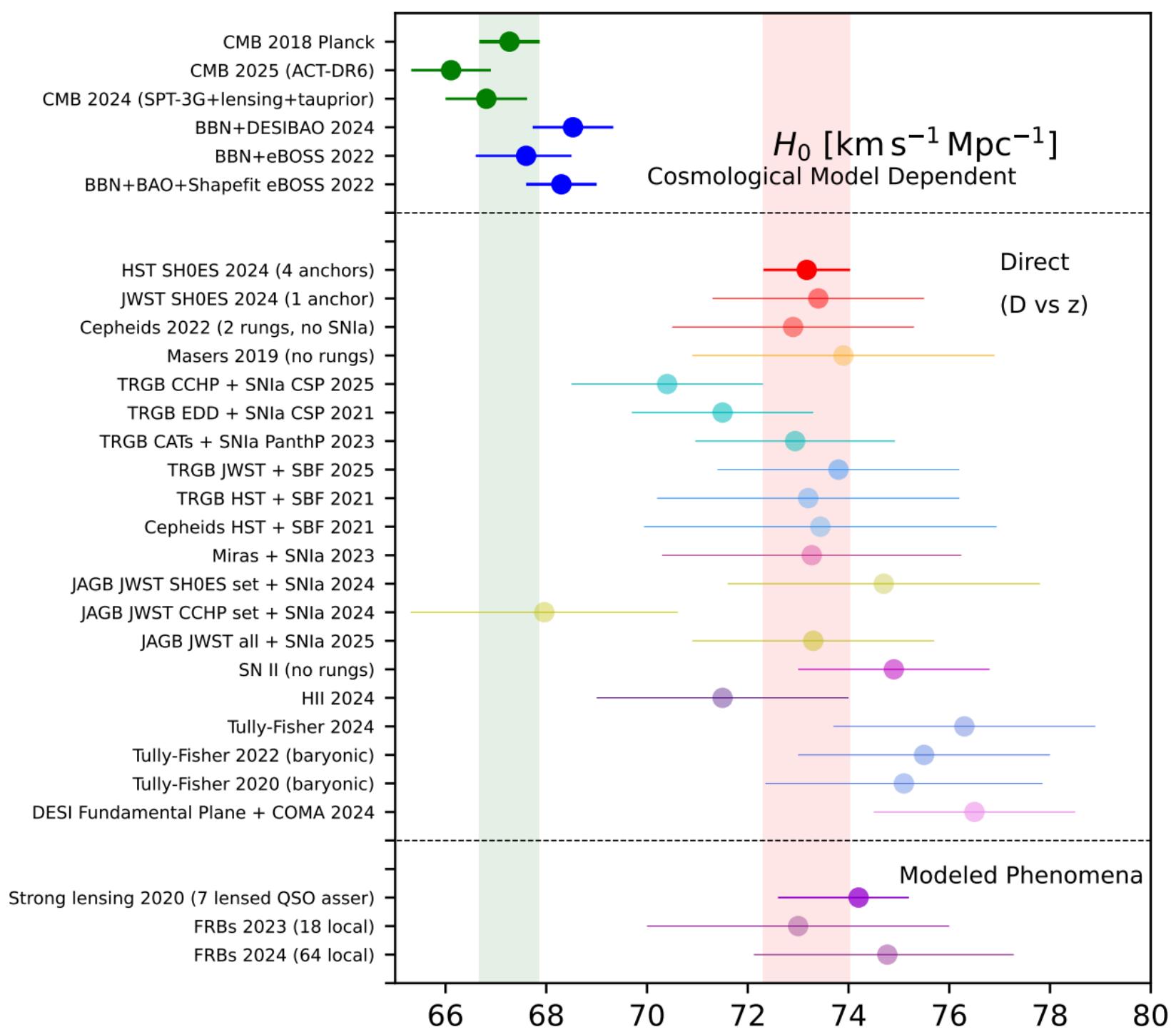
H_0 tension



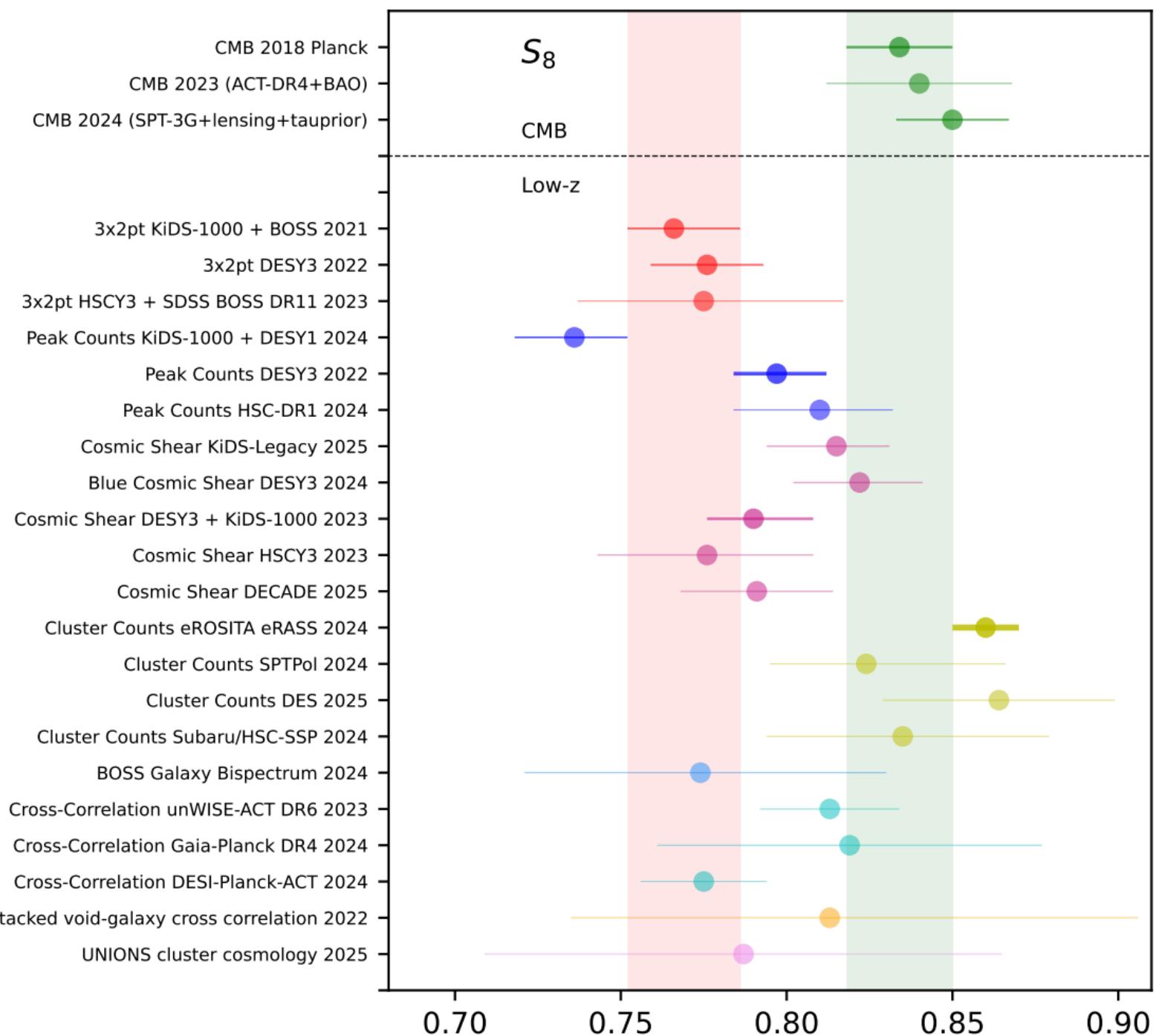
[CosmoVerse White
Paper: 2504.01669]

Various datasets point at cracks in the Λ CDM model

H_0 tension



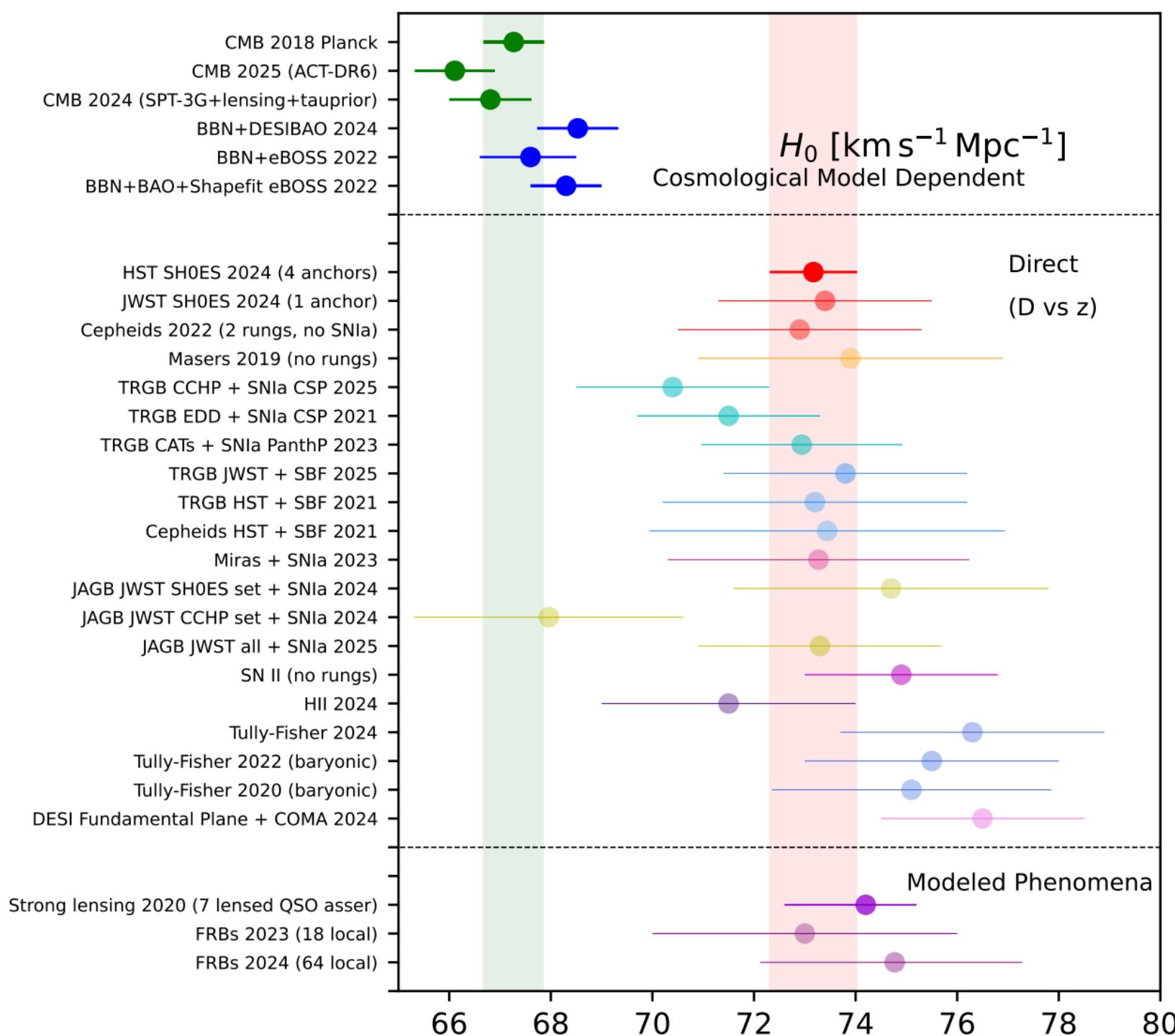
S_8 tension?



[CosmoVerse White
Paper: 2504.01669]

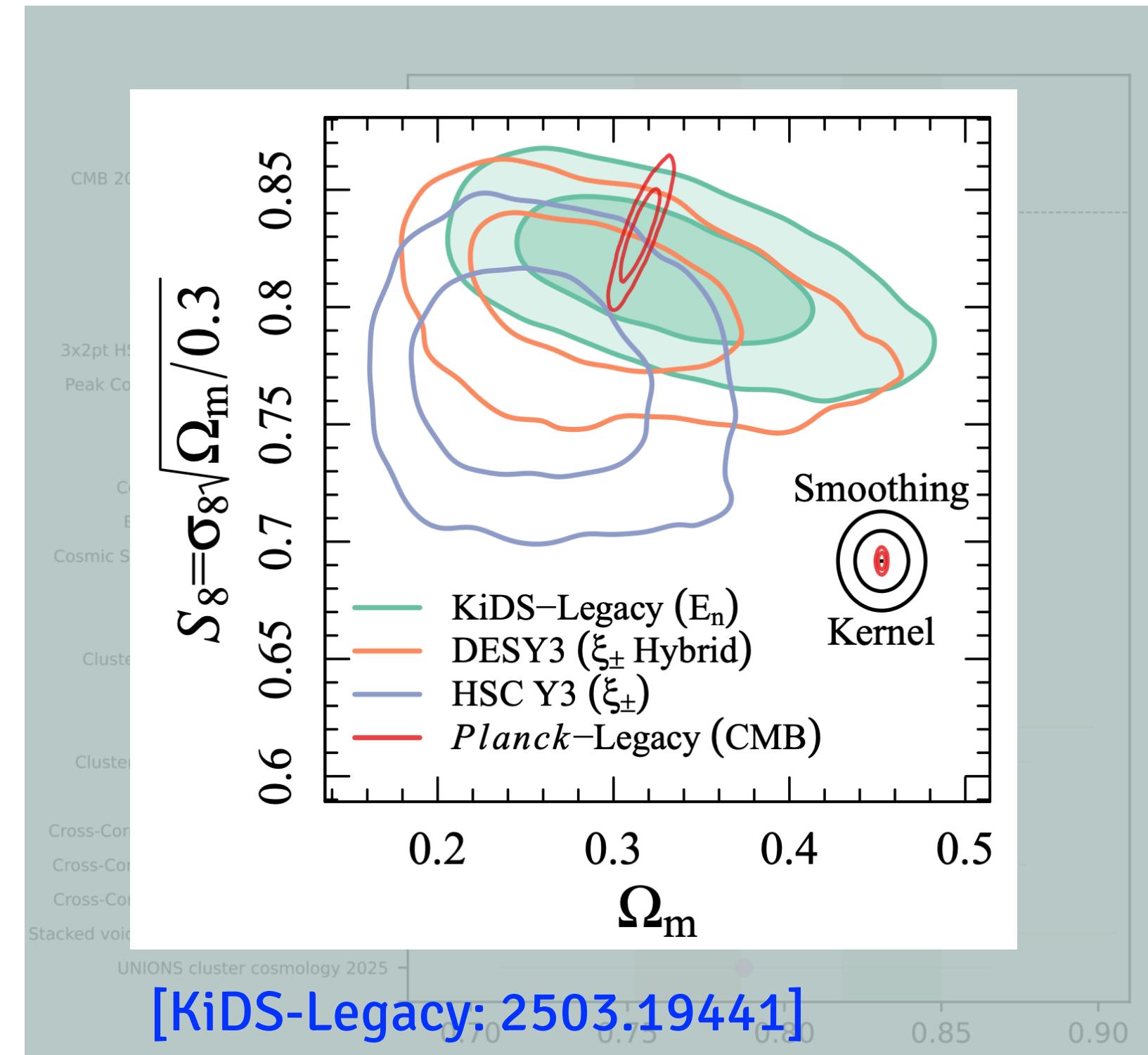
Various datasets point at **cracks in the Λ CDM model**

H_0 tension



[CosmoVerse White
Paper: 2504.01669]

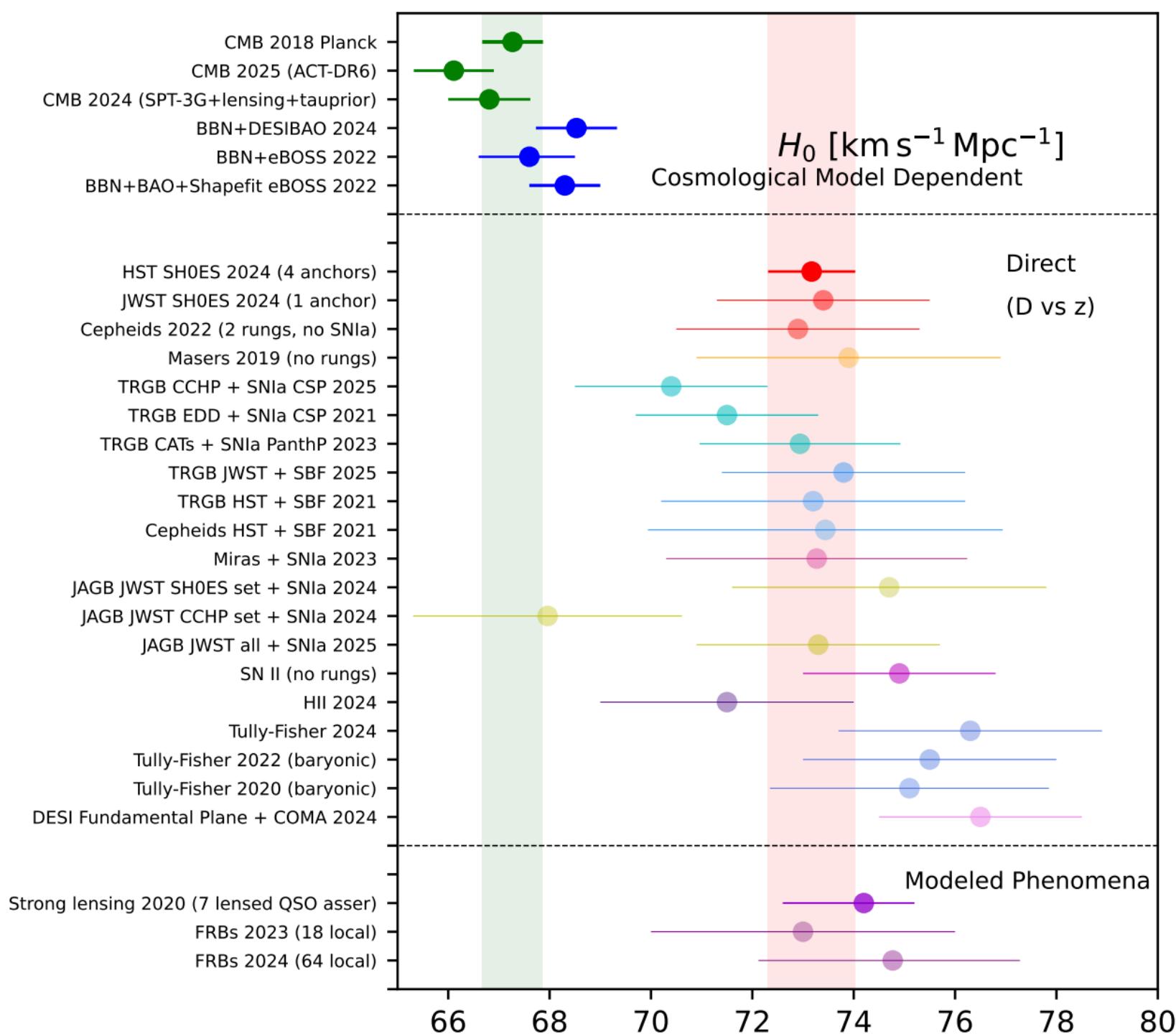
S_8 tension?



Seems to be dead
after KiDS-Legacy...

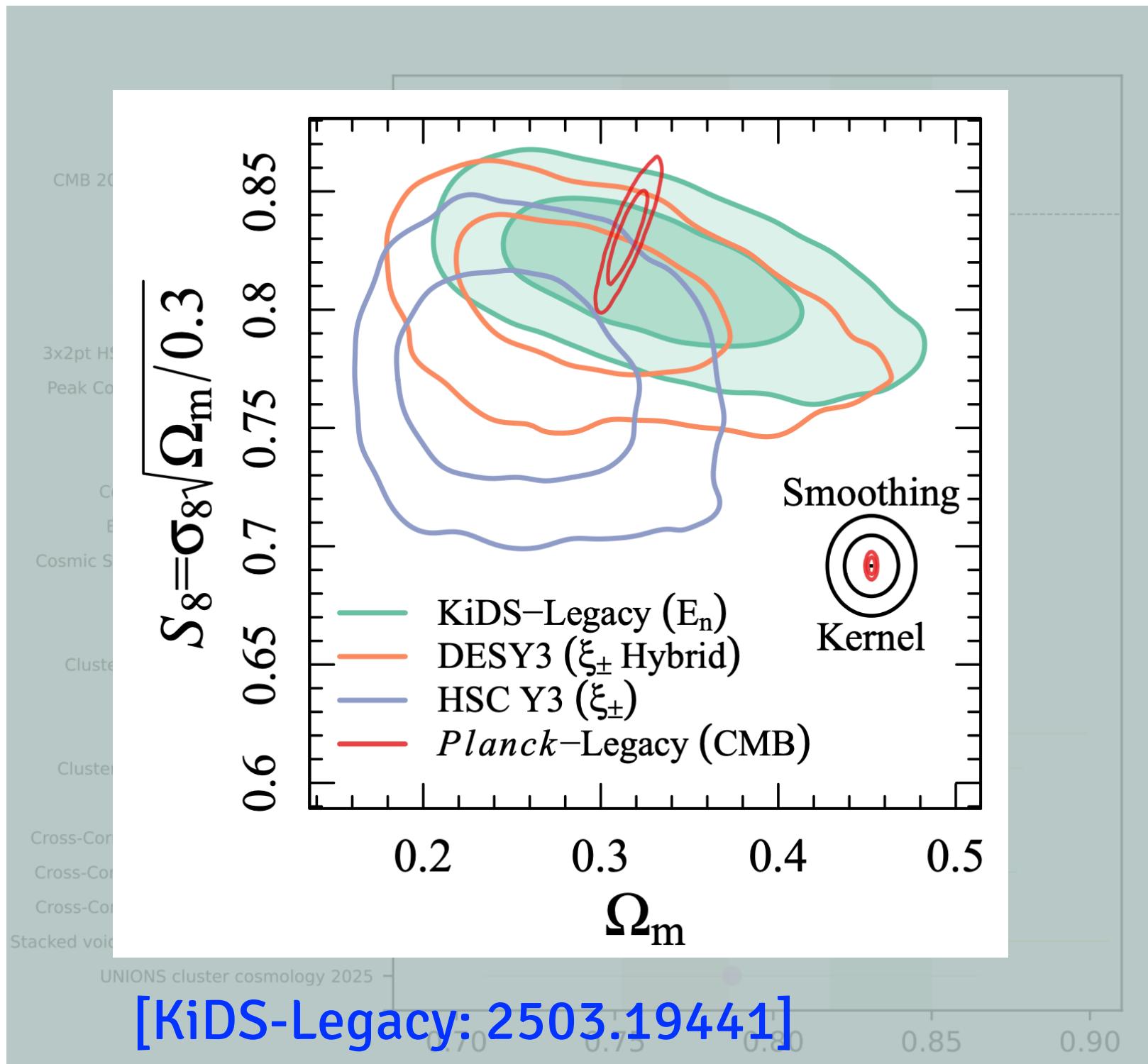
Various datasets point at **cracks in the Λ CDM model**

H_0 tension



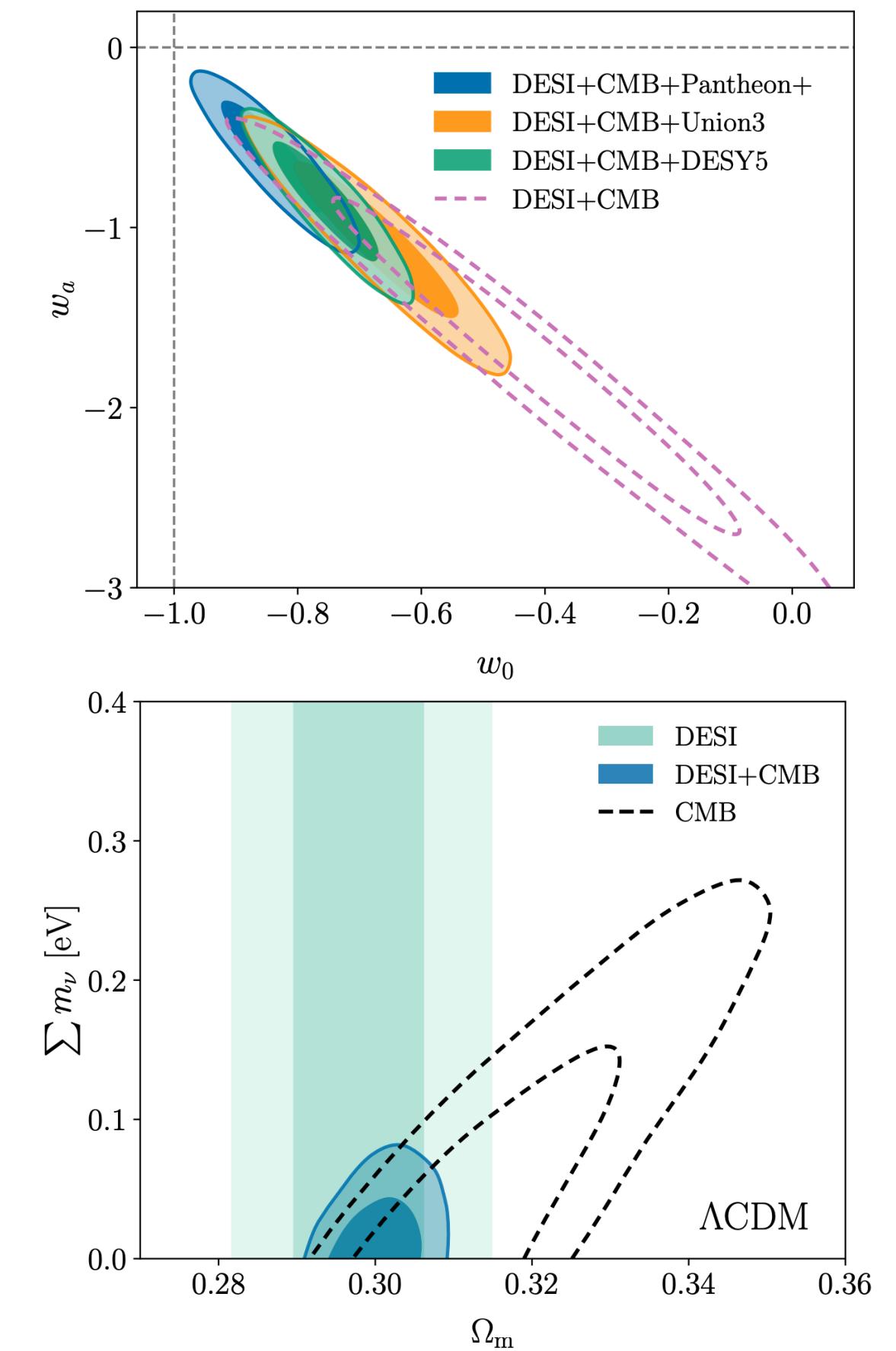
[CosmoVerse White
Paper: 2504.01669]

S_8 tension?



Seems to be dead
after KiDS-Legacy...

Latest DESI results



[DESI BAO DR2: 2503.14738]

To learn about the universe, we need to **solve the inverse problem**

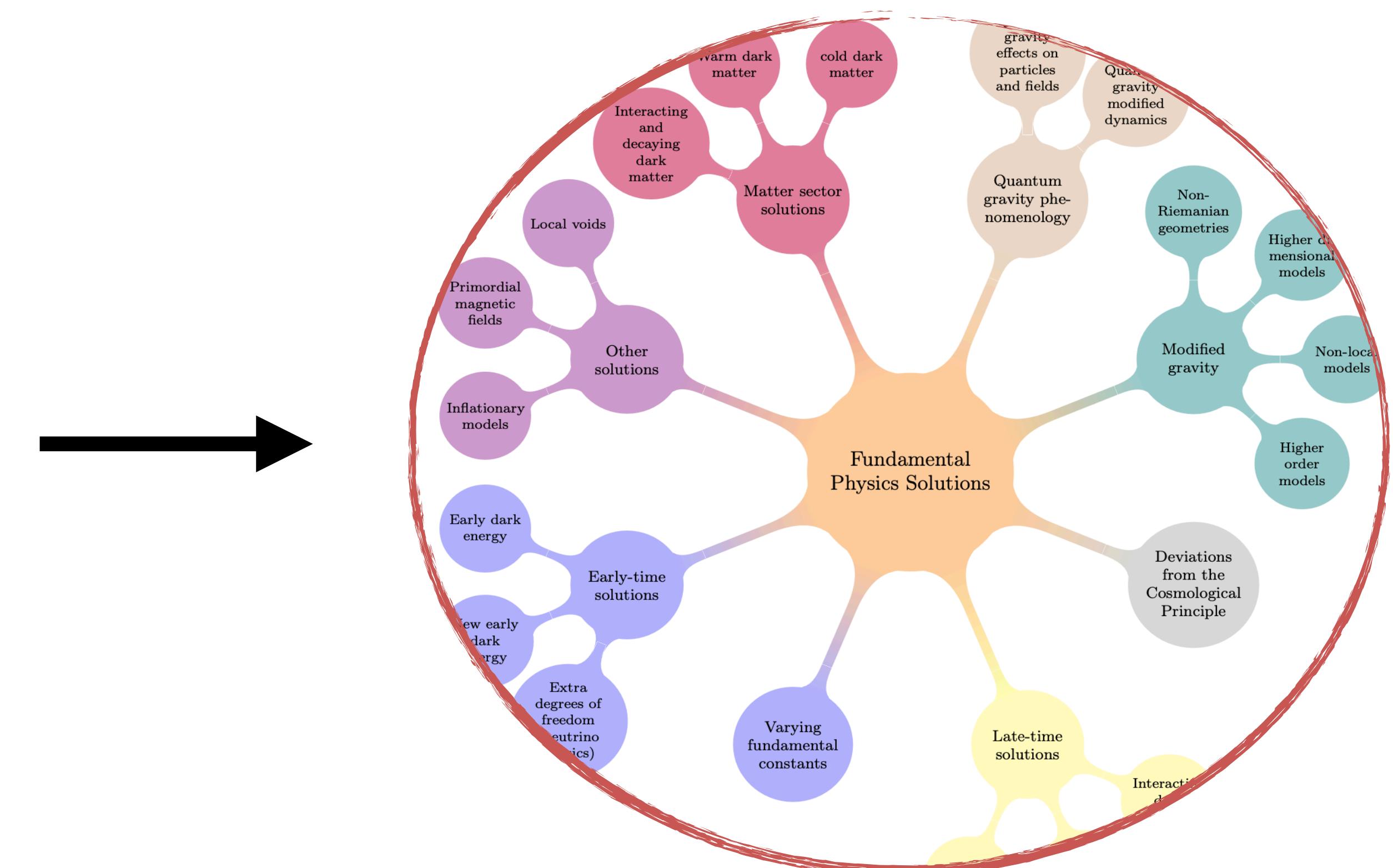
To learn about the universe, we need to **solve the inverse problem**

Data

To learn about the universe, we need to **solve the inverse problem**

Data

Theory



Some Λ CDM extensions I studied in the past

Decaying DM

[[GFA+](#) 2008.09615]
[[GFA+](#) 2102.12498]
[Simon, [GFA+](#) 2203.07440]

Early Modified Gravity /Early Dark Energy

[[GFA](#), Braglia+ 2308.12345]
[Murgia, [GFA+](#) 2009.10733]

Interacting Stepped DR

[Schöneberg & [GFA](#) 2206.11276]
[Schöneberg, [GFA+](#) 2306.12469]

Decaying neutrinos

[[GFA+](#) 2112.13862]

Some Λ CDM extensions I studied in the past

Decaying DM

[\[GFA+ 2008.09615\]](#)
[\[GFA+ 2102.12498\]](#)
[\[Simon, GFA+ 2203.07440\]](#)

Early Modified Gravity /Early Dark Energy

[\[GFA, Braglia+ 2308.12345\]](#)
[\[Murgia, GFA+ 2009.10733\]](#)

Interacting Stepped DR

[\[Schöneberg & GFA 2206.11276\]](#)
[\[Schöneberg, GFA+ 2306.12469\]](#)

Decaying neutrinos

[\[GFA+ 2112.13862\]](#)

Hundreds of other models, e.g. see reviews:

“In the Realm of the Hubble tension - a Review of Solutions” Di Valentino+ [\[2103.01183\]](#)

“The H_0 Olympics: a fair ranking of proposed models” Schöneberg, GFA+ [\[2107.10291\]](#)

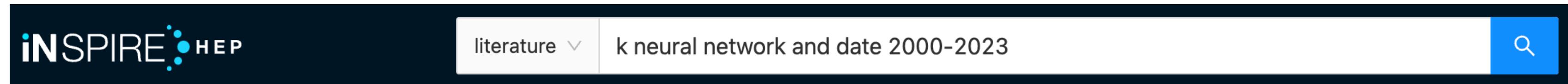
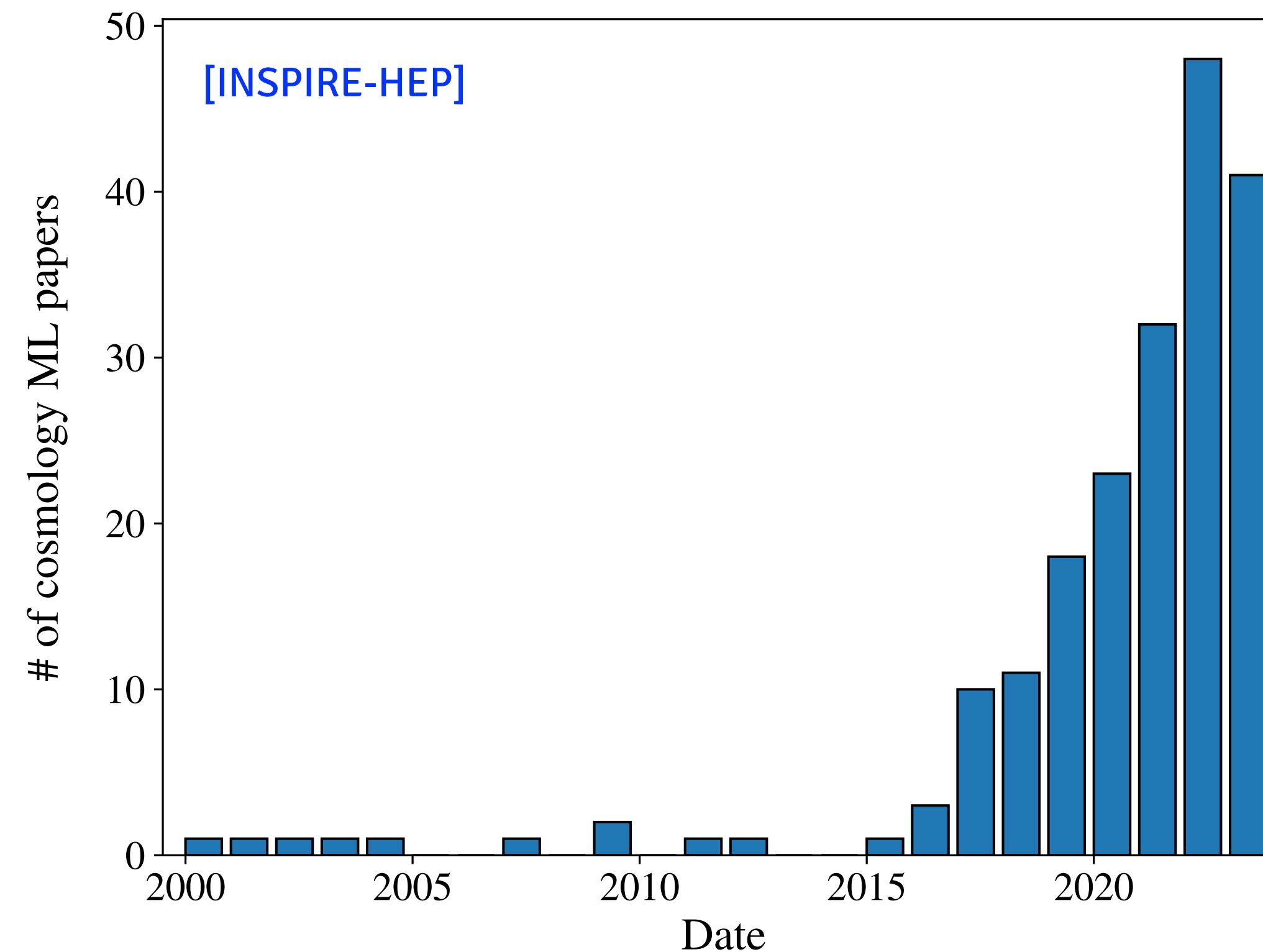
“The CosmoVerse White Paper”, Di Valentino, Levi+ [\[2504.01669\]](#)

Comparing these vast volumes of cosmic data against the ever-increasing space of theories is a huge **challenge**

Comparing these vast volumes of cosmic data against the ever-increasing space of theories is a huge **challenge**

- Expensive simulations

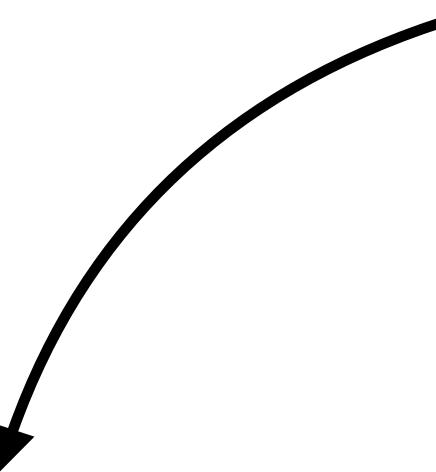
- High-dimensional parameter spaces



Machine learning is
having a **strong impact**
in cosmology

Two main approaches in ML

Two main approaches in ML



Emulators

to speed up model evaluations of
cosmological observables

Two main approaches in ML

Emulators

to speed up model evaluations of cosmological observables

New statistical methods

to improve the sampling in high-dimensional parameter spaces

1. Emulators

For testing **invisible neutrino decays** with latest cosmic data

2.

Simulation-based inference

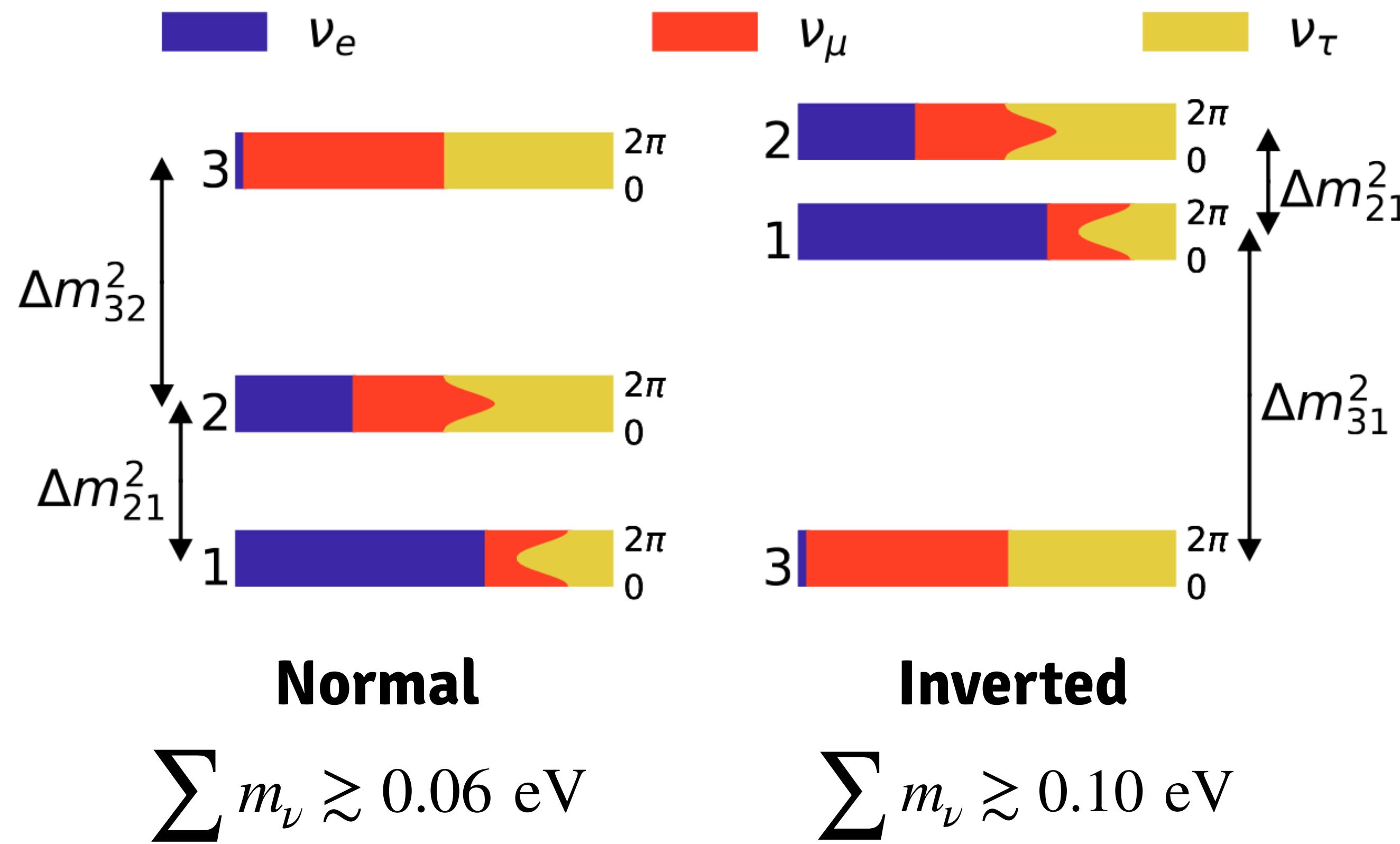
For efficient inference from **Euclid** data, with applications to **evolving dark energy**

1. Emulators

For testing **invisible neutrino decays** with latest cosmic data

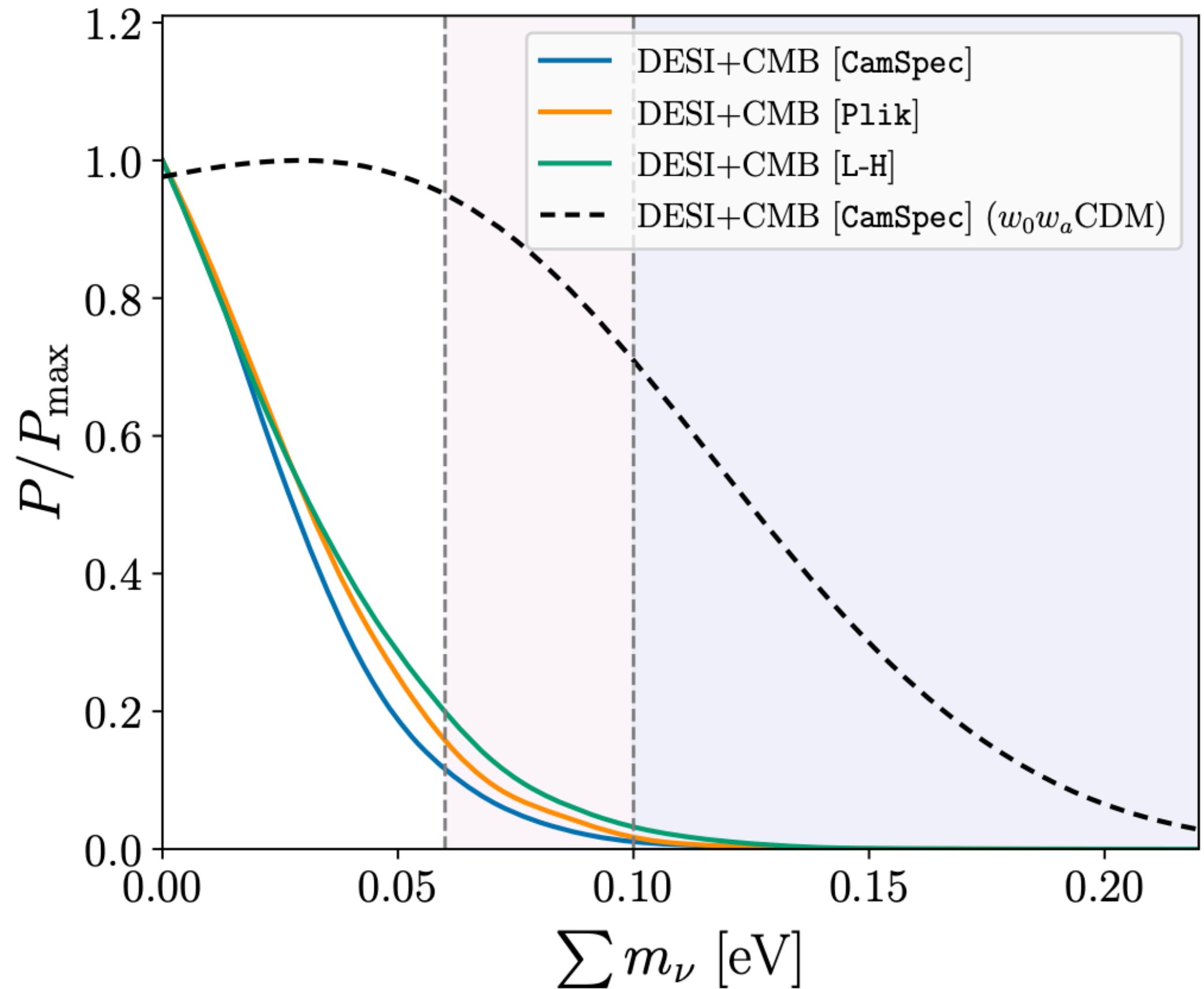
Ongoing work, to appear soon
[arXiv:2506.XXXXX](https://arxiv.org/abs/2506.XXXXX)

Oscillation experiments have provided convincing evidence that **neutrinos have mass**



[Salas et al. 1806.11051]

Cosmological bounds



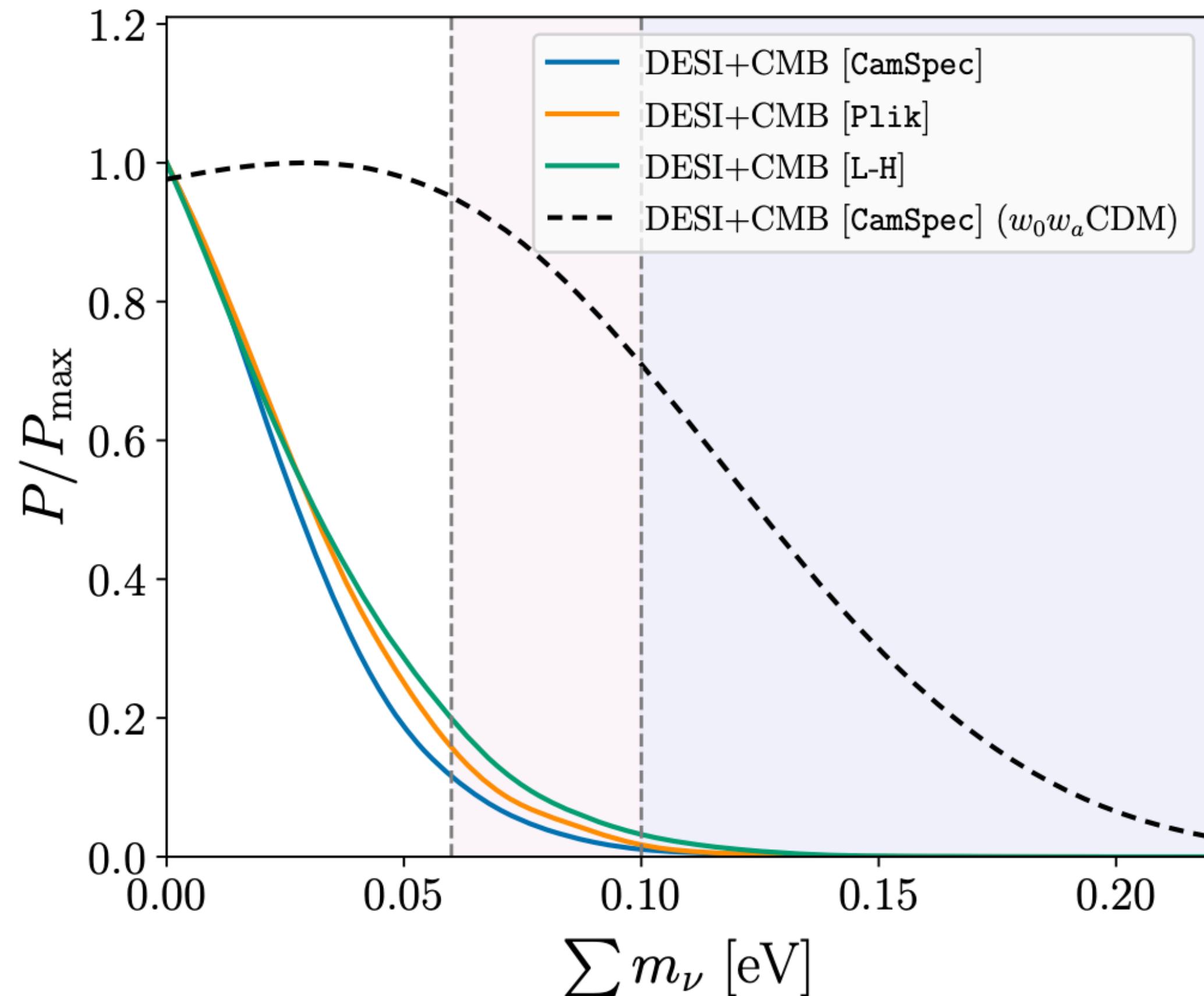
Cosmology has given tightest bound to date

$$\sum m_\nu < 0.064 \text{ eV}$$

(95%, DESI+CMB [CamSpec])

DESI DR2 Results II [2503.14738]

Cosmological bounds



Cosmology has given tightest bound to date

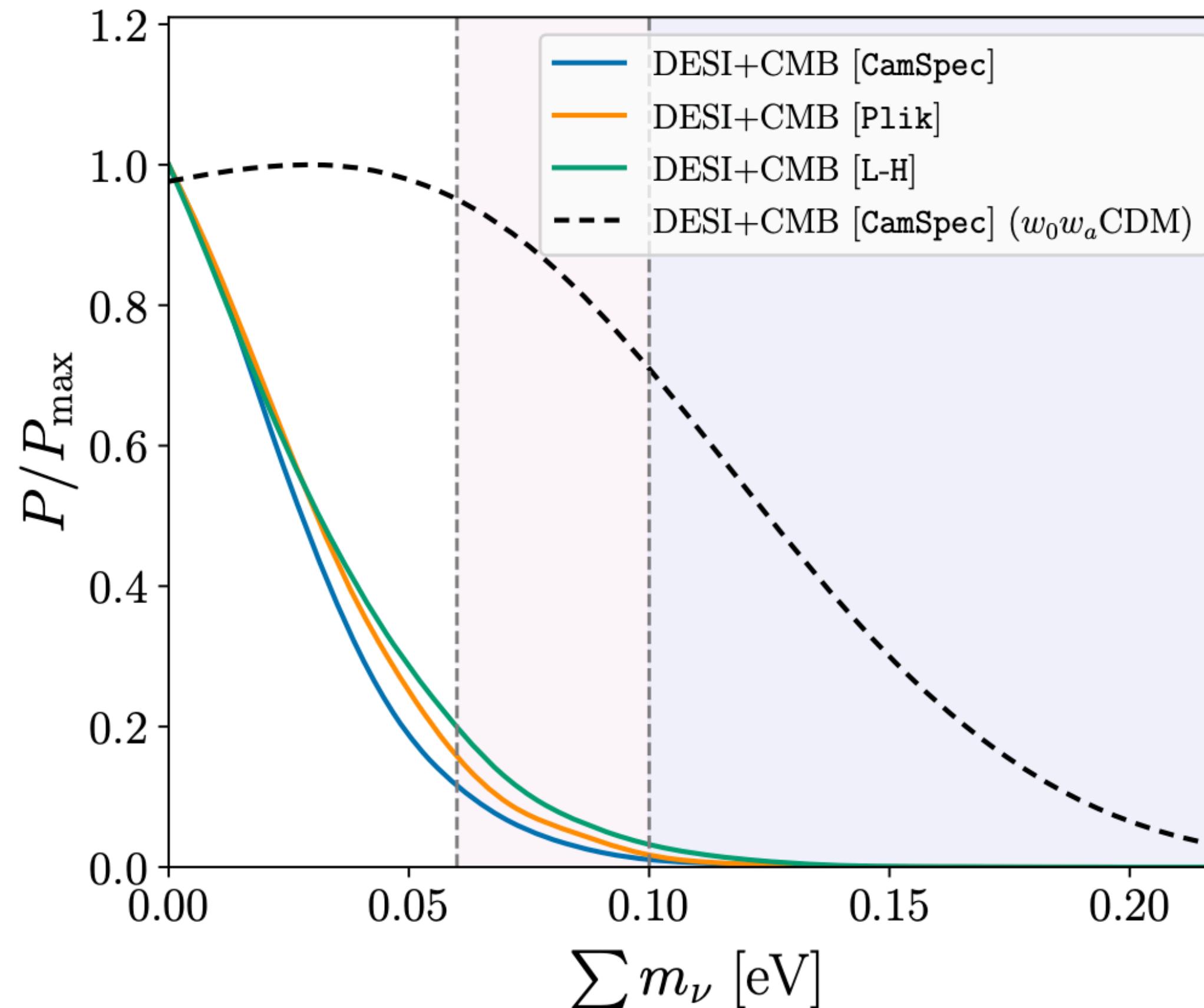
$$\sum m_\nu < 0.064 \text{ eV} \quad (95\%, \text{DESI+CMB [CamSpec]})$$

However, these bounds are **model dependent**

$$\sum m_\nu < 0.163 \text{ eV} \quad (95\%, w_0 w_a \text{CDM: DESI+CMB})$$

DESI DR2 Results II [2503.14738]

Cosmological bounds



Cosmology has given tightest bound to date

$$\sum m_\nu < 0.064 \text{ eV}$$

(95%, DESI+CMB [CamSpec])

However, these bounds are **model dependent**

$$\sum m_\nu < 0.163 \text{ eV}$$

(95%, $w_0 w_a$ CDM: DESI+CMB)

What about changing **neutrino properties**?

Decaying neutrinos

2 neutrinos decay **in the SM** but $\tau_\nu \sim (G_F^2 m_\nu^5)^{-1} \gtrsim 10^{33} \text{ yr} \gg t_U$

Decaying neutrinos

2 neutrinos decay **in the SM** but $\tau_\nu \sim (G_F^2 m_\nu^5)^{-1} \gtrsim 10^{33} \text{ yr} \gg t_U$

Radiative decays are strongly constrained $\tau_\nu > 10^2 - 10^{10} t_U$

[Aalberts, Ando et al. \[1803.00588\]](#)

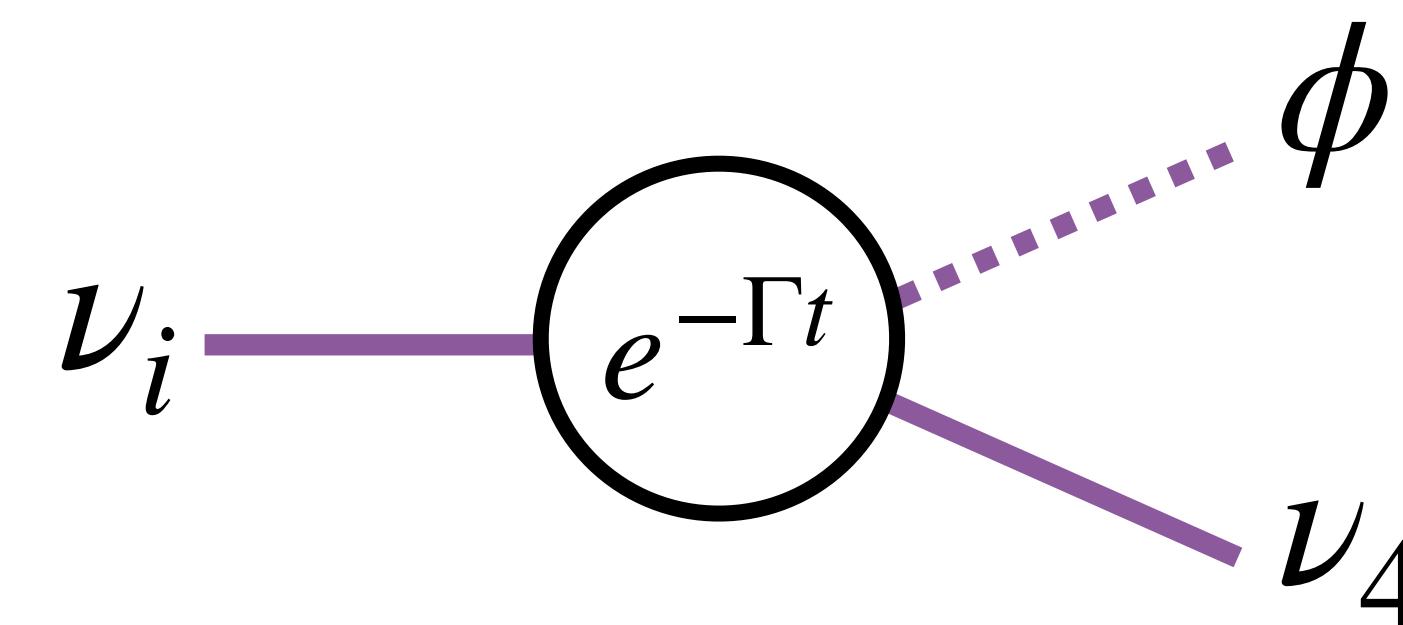
Decaying neutrinos

2 neutrinos decay **in the SM** but $\tau_\nu \sim (G_F^2 m_\nu^5)^{-1} \gtrsim 10^{33}$ yr $\gg t_U$

Radiative decays are strongly **constrained** $\tau_\nu > 10^2 - 10^{10}$ t_U

[Aalberts, Ando et al. \[1803.00588\]](#)

Decays to **dark radiation**, much less constrained



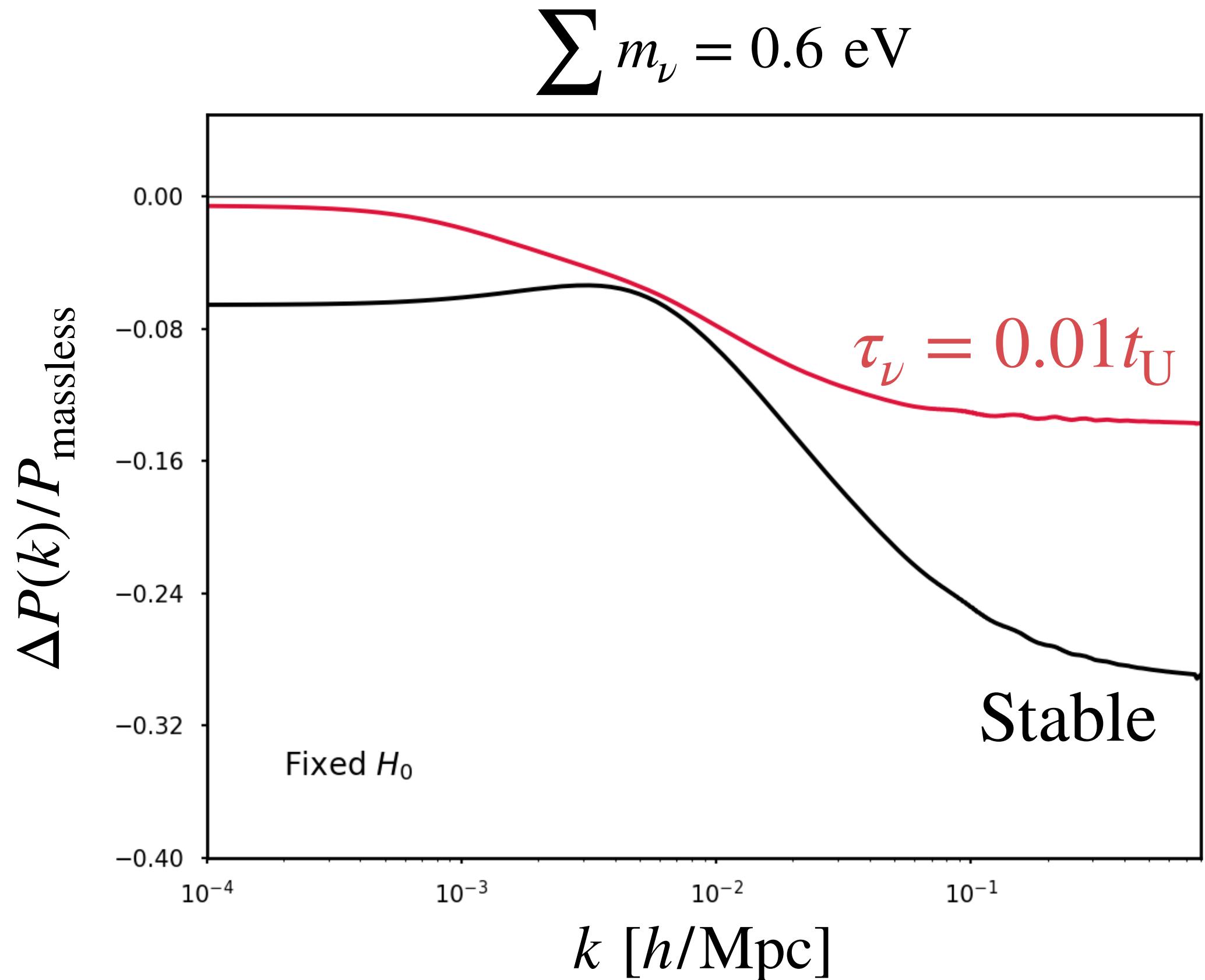
Appears naturally in many **simple extensions of the seesaw mechanism**

$$\mathcal{L}_{\text{int}} = \lambda i \phi \bar{\nu}_i \gamma_5 \nu_4 + \text{h.c.}$$

[Escudero & Fairbairn \[1907.05425\]](#)

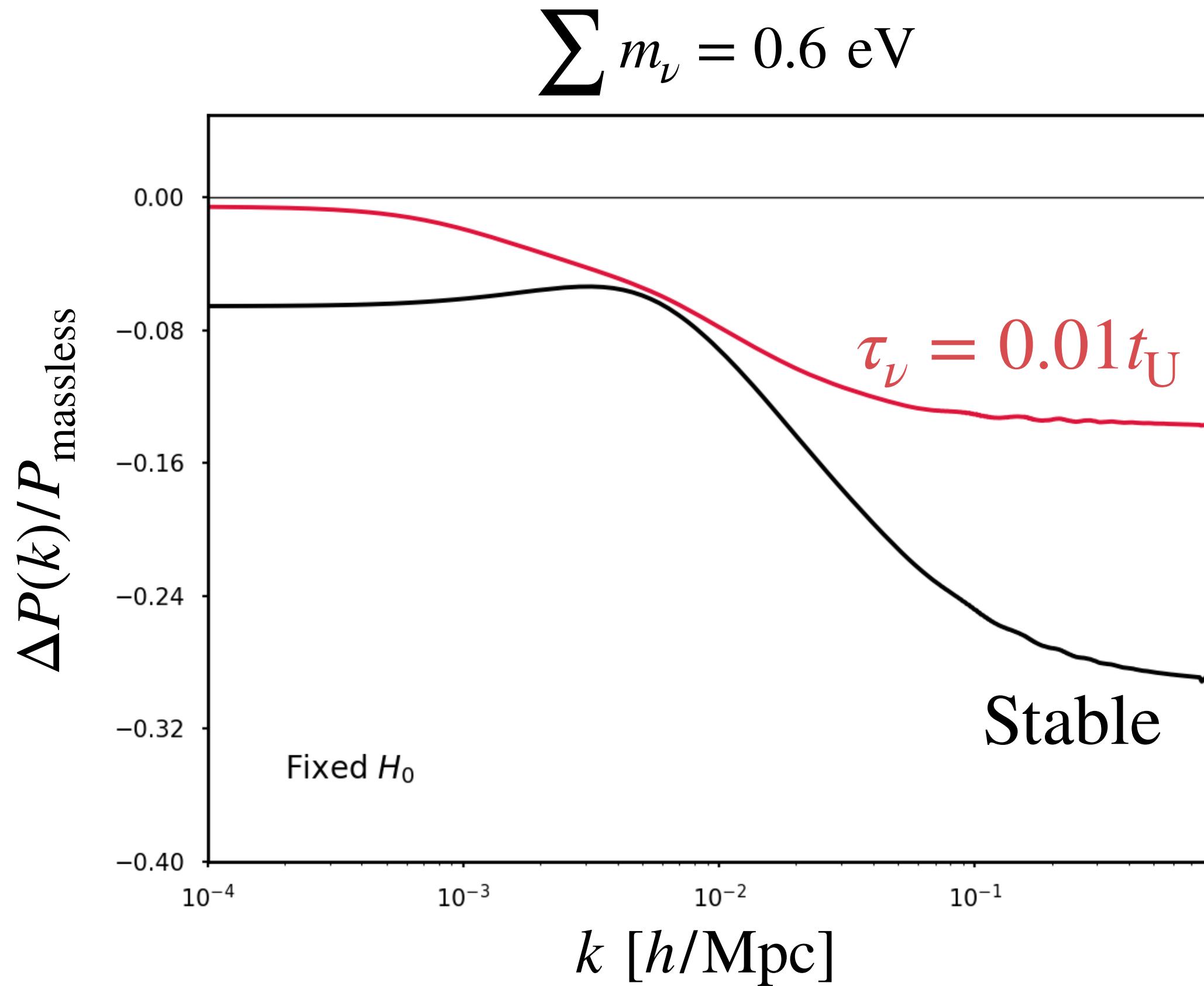
[Escudero et al. \[2007.04994\]](#)

Decaying neutrinos



A finite neutrino lifetime allows to **reduce their impact** on structure growth and expansion rate

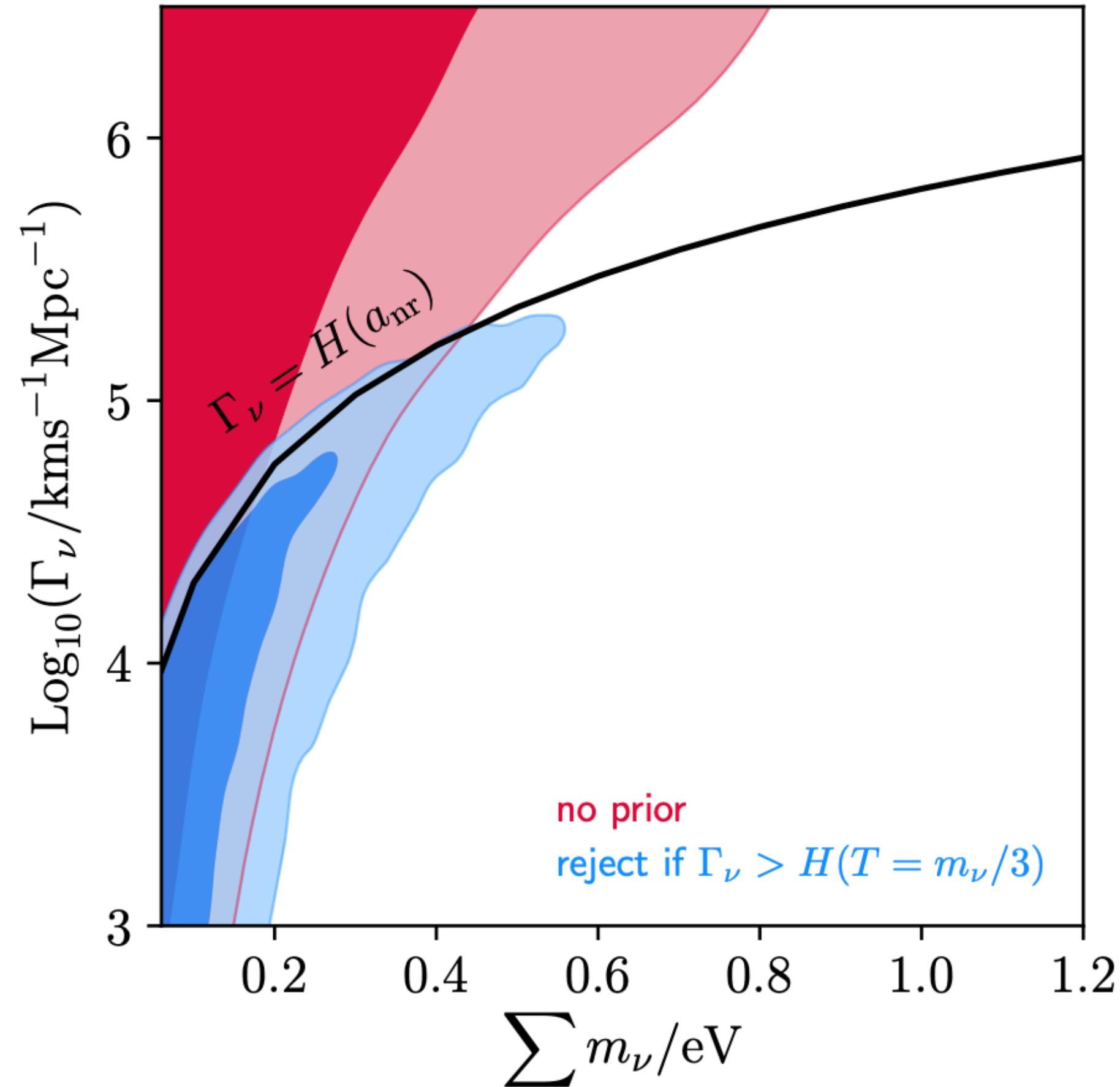
Decaying neutrinos



A finite neutrino lifetime allows to **reduce their impact** on structure growth and expansion rate

This permits a **relaxation of neutrino mass bounds** from cosmology

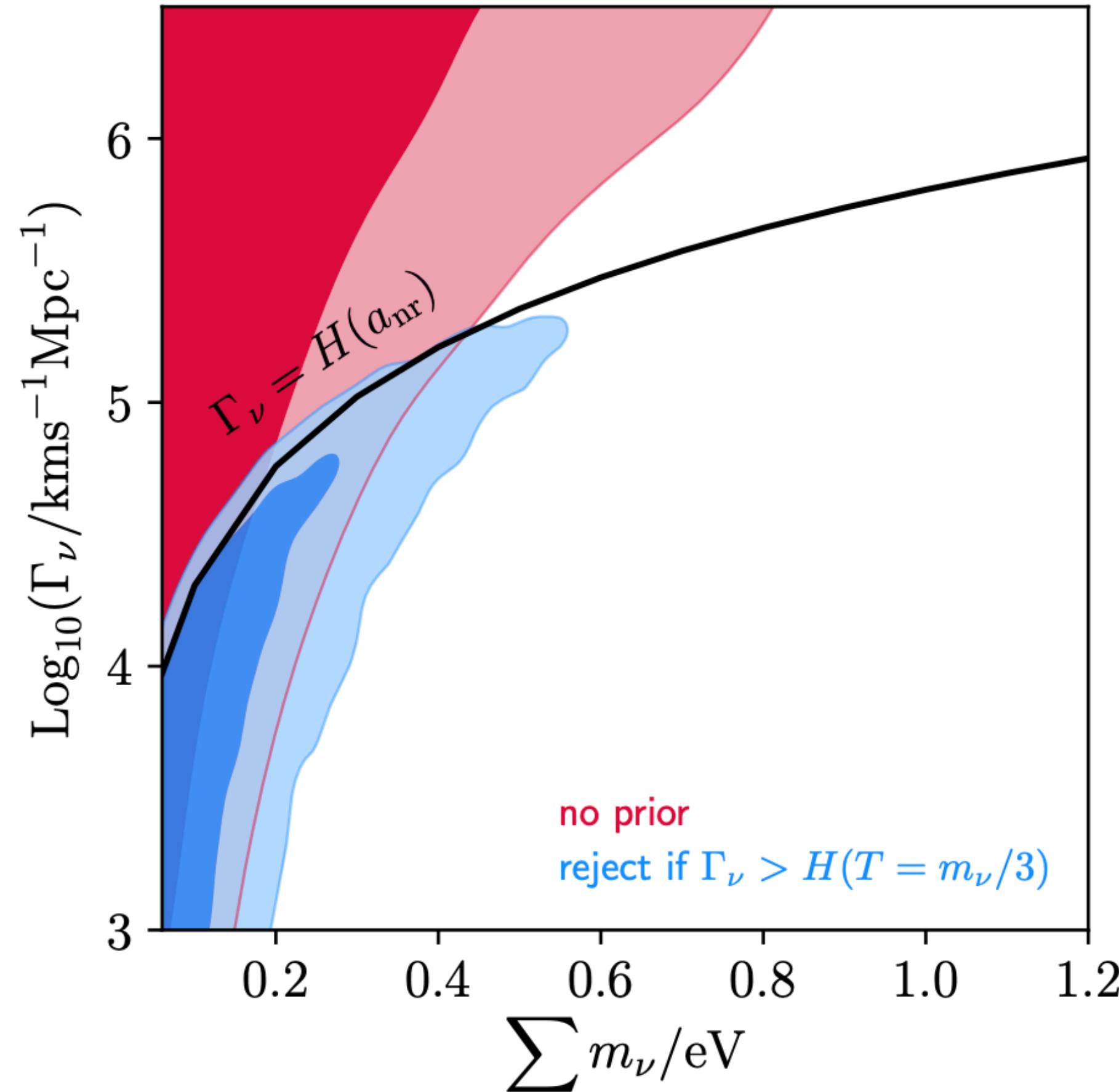
CMB+ BOSS + SNIa



Back in 2021, we showed that **non-relativistic neutrino decays to DR** can relax mass bounds up to $\sum m_\nu < 0.4 \text{ eV}$

Abellán et al. [2112.13862]

CMB+ BOSS + SNIa



Abellán et al. [2112.13862]

Back in 2021, we showed that **non-relativistic neutrino decays to DR** can relax mass bounds up to $\sum m_\nu < 0.4 \text{ eV}$

GOAL

Build emulator for neutrino decay model, and use it to update mass bounds in light of latest DESI data

Emulating an Einstein-Boltzmann Solver (EBS)

Cosmo. pars

$H_0, \Omega_b, A_s, n_s, \dots$

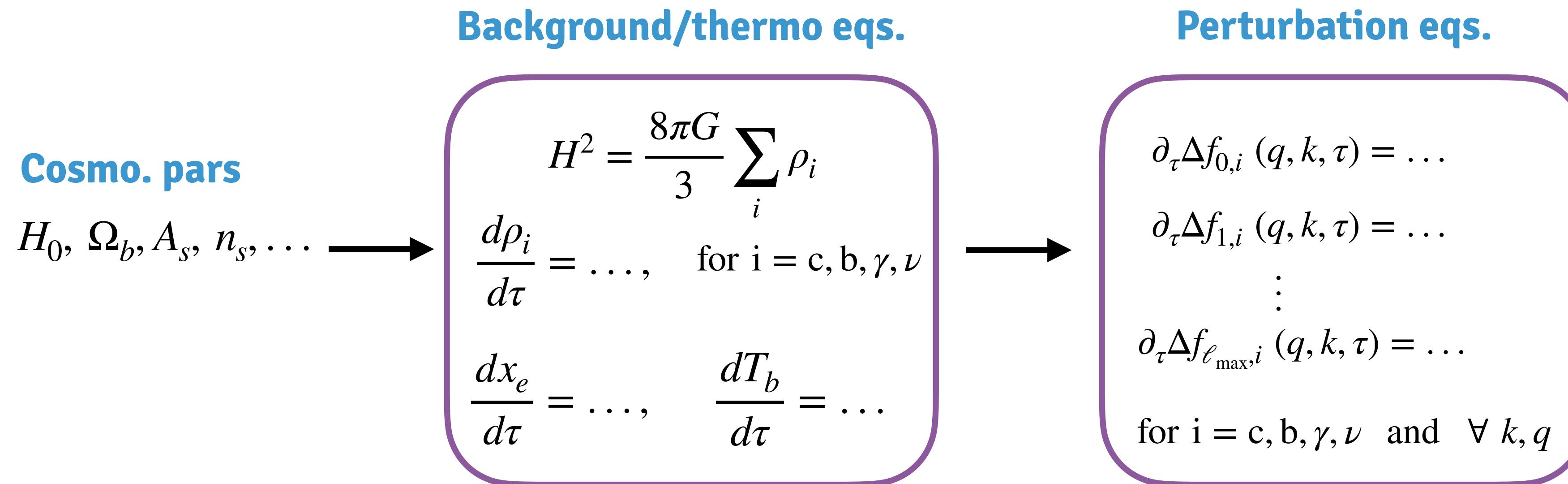
Emulating an Einstein-Boltzmann Solver (EBS)

Cosmo. pars
 $H_0, \Omega_b, A_s, n_s, \dots \rightarrow$

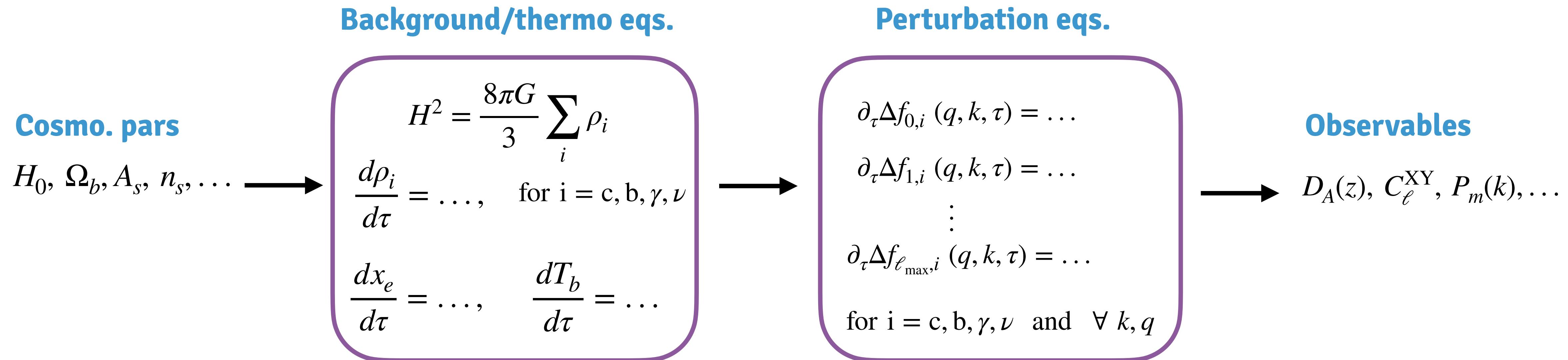
Background/thermo eqs.

$$H^2 = \frac{8\pi G}{3} \sum_i \rho_i$$
$$\frac{d\rho_i}{d\tau} = \dots, \quad \text{for } i = c, b, \gamma, \nu$$
$$\frac{dx_e}{d\tau} = \dots, \quad \frac{dT_b}{d\tau} = \dots$$

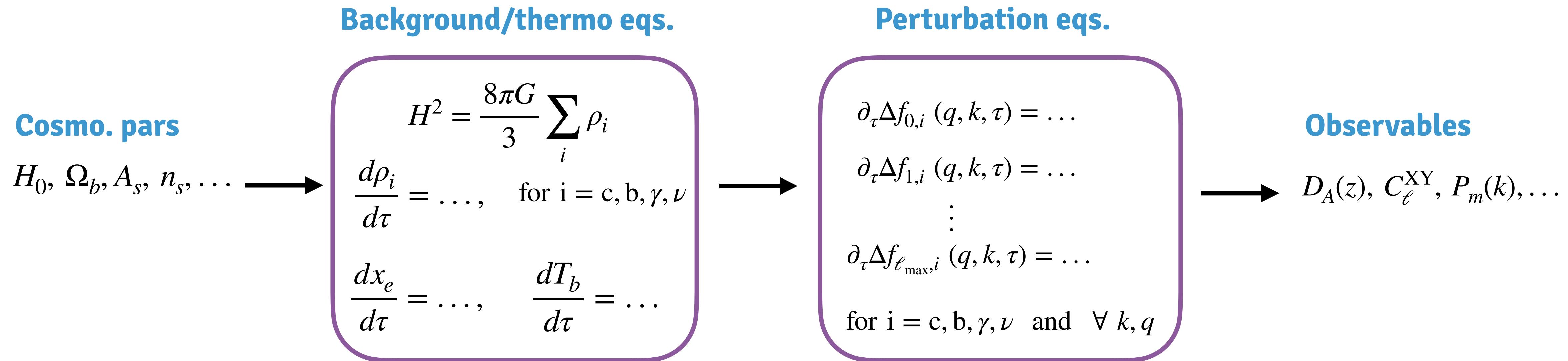
Emulating an Einstein-Boltzmann Solver (EBS)



Emulating an Einstein-Boltzmann Solver (EBS)



Emulating an Einstein-Boltzmann Solver (EBS)

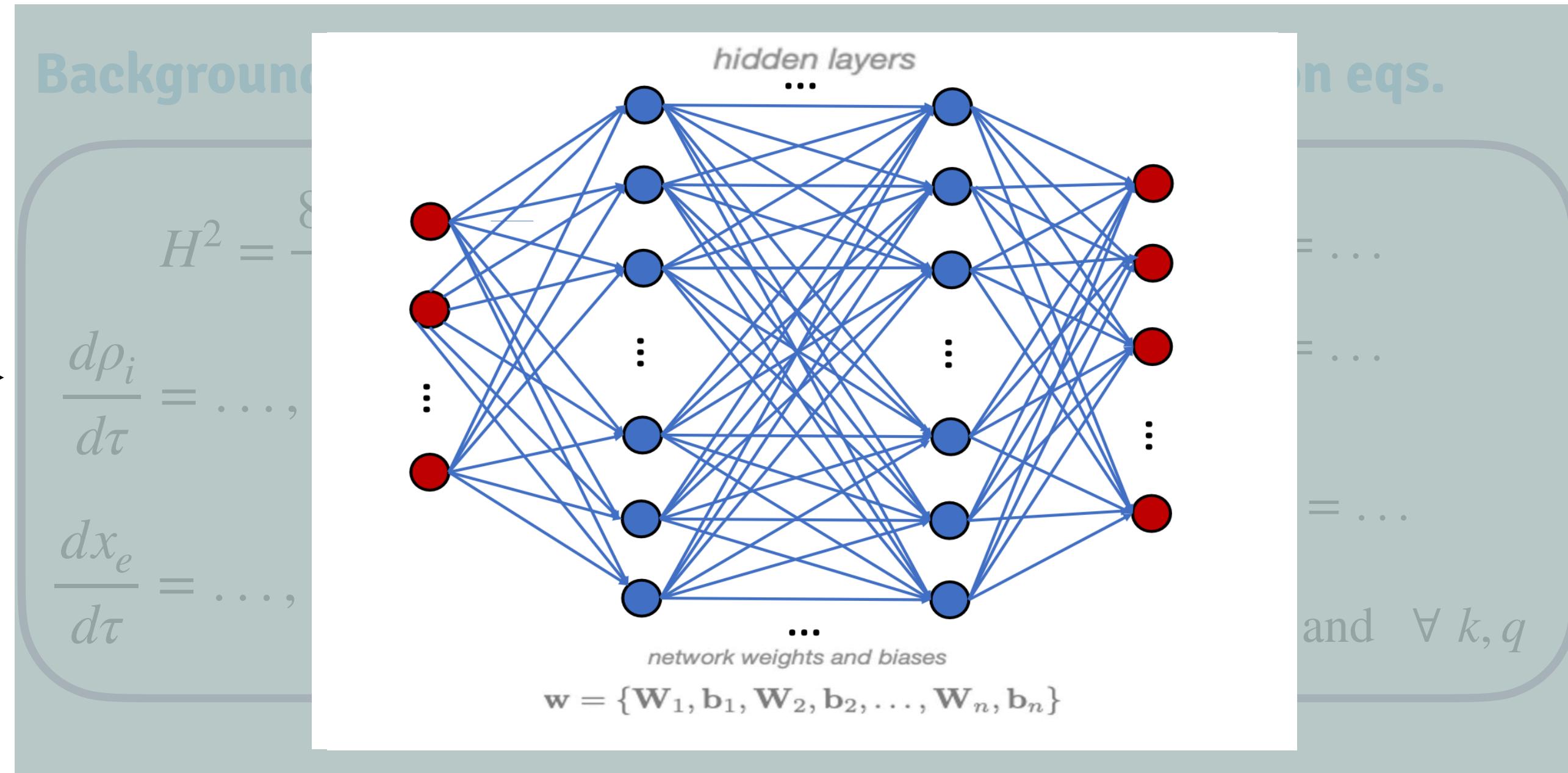


A single call to an EBS (e.g. CLASS) can be **time-consuming in Λ CDM extensions**. Moreover, one often needs **$\sim 10^6$ model evaluations** for accurate inference.

Emulating an Einstein-Boltzmann Solver (EBS)

Cosmo. pars

$H_0, \Omega_b, A_s, n_s, \dots \rightarrow$



IDEA: Replace the calculation of the full system of linear Einstein-Boltzmann eqs. by a **trained emulator**, e.g. a neural network (NN)

Emulating an Einstein-Boltzmann Solver (EBS)

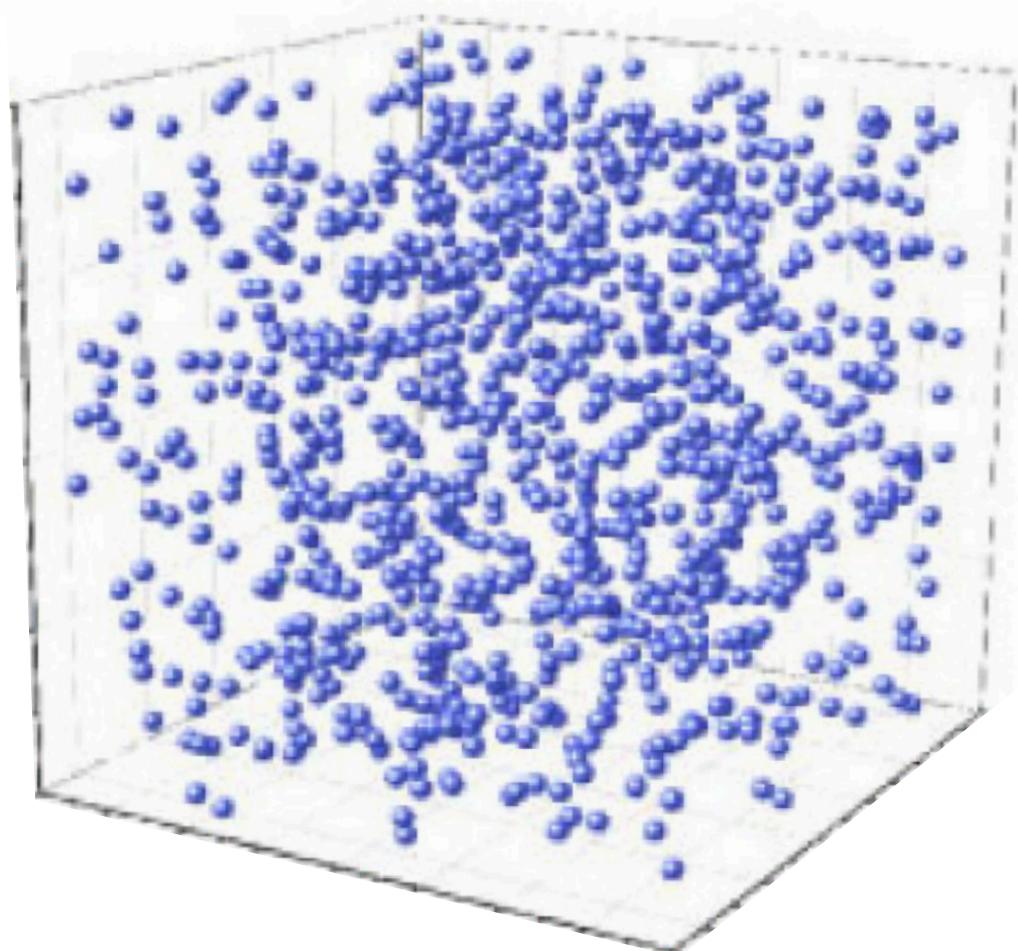
Many EBS emulators available on the market (e.g. [CosmoPower](#), [CosmicNet](#), [Capse.jl](#))

We rely on [CONNECT](#) [Nygaard et al. 2205.15726]

Emulating an Einstein-Boltzmann Solver (EBS)

Many EBS emulators available on the market (e.g. [CosmoPower](#), [CosmicNet](#), [Capse.jl](#))
We rely on [CONNECT](#) [Nygaard et al. 2205.15726]

Latin Hypercube (LHC) sampling

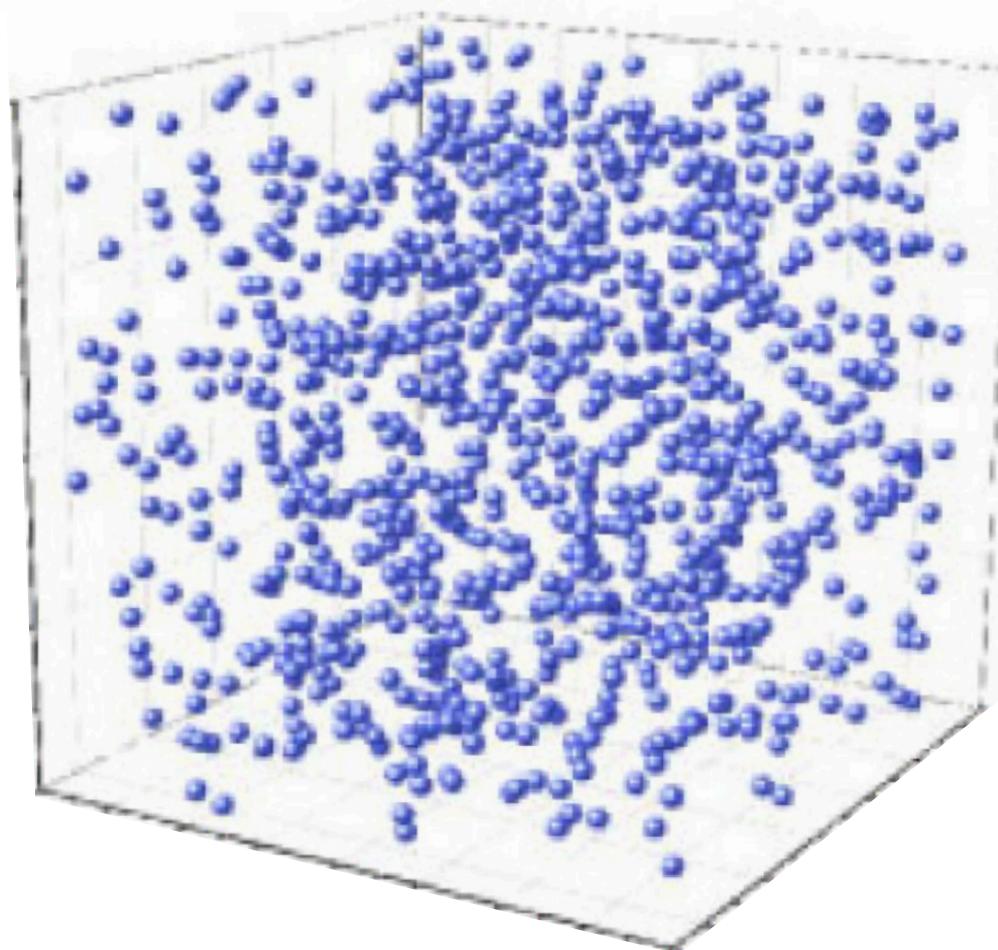


Achieves close-to-uniform sampling,
but models near the **corners** have
very low likelihood

Emulating an Einstein-Boltzmann Solver (EBS)

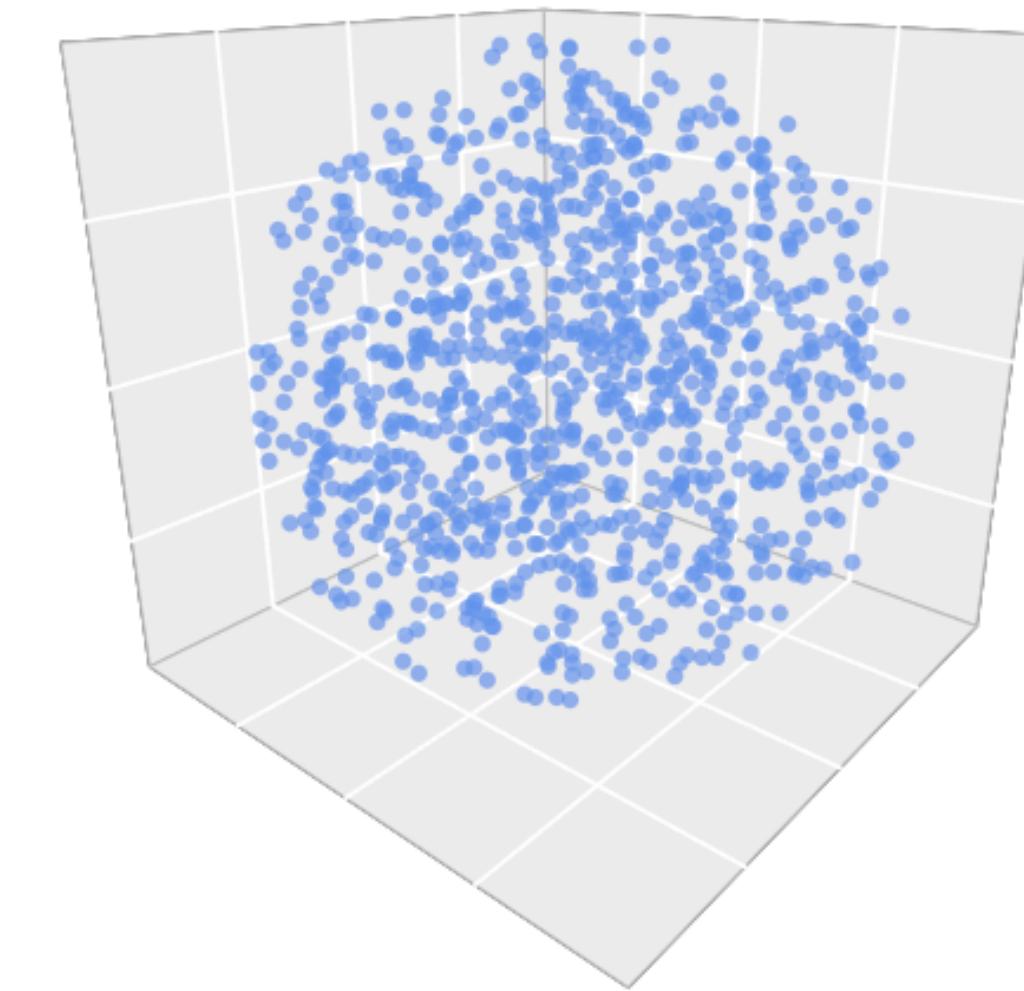
Many EBS emulators available on the market (e.g. [CosmoPower](#), [CosmicNet](#), [Capse.jl](#))
We rely on [CONNECT](#) [Nygaard et al. 2205.15726]

Latin Hypercube (LHC) sampling



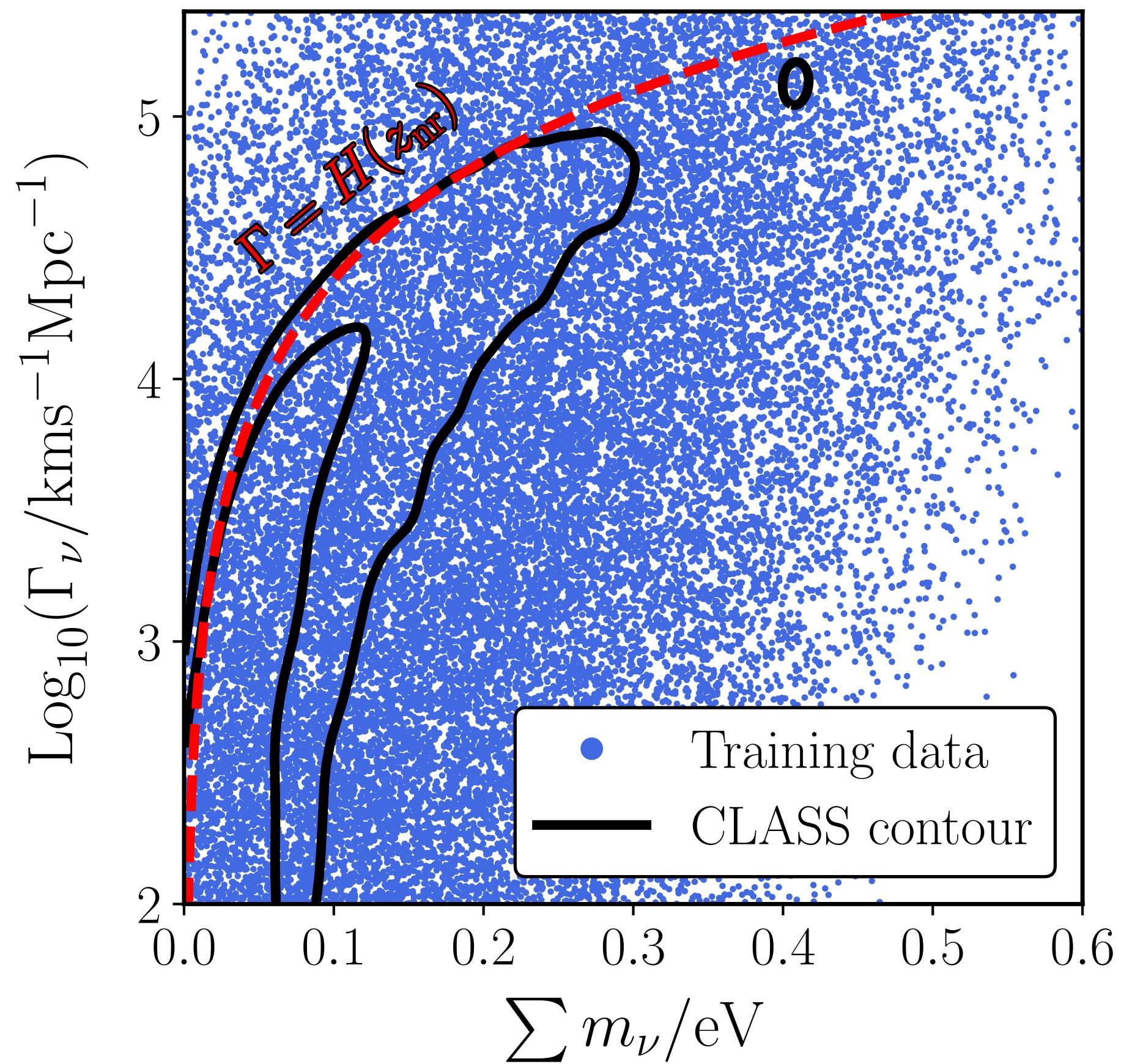
Achieves close-to-uniform sampling, but models near the **corners** have **very low likelihood**

Hypersphere sampling



Allows to concentrate points in **high-likelihood regions**
→ more efficient and accurate

Building emulator for decaying neutrinos

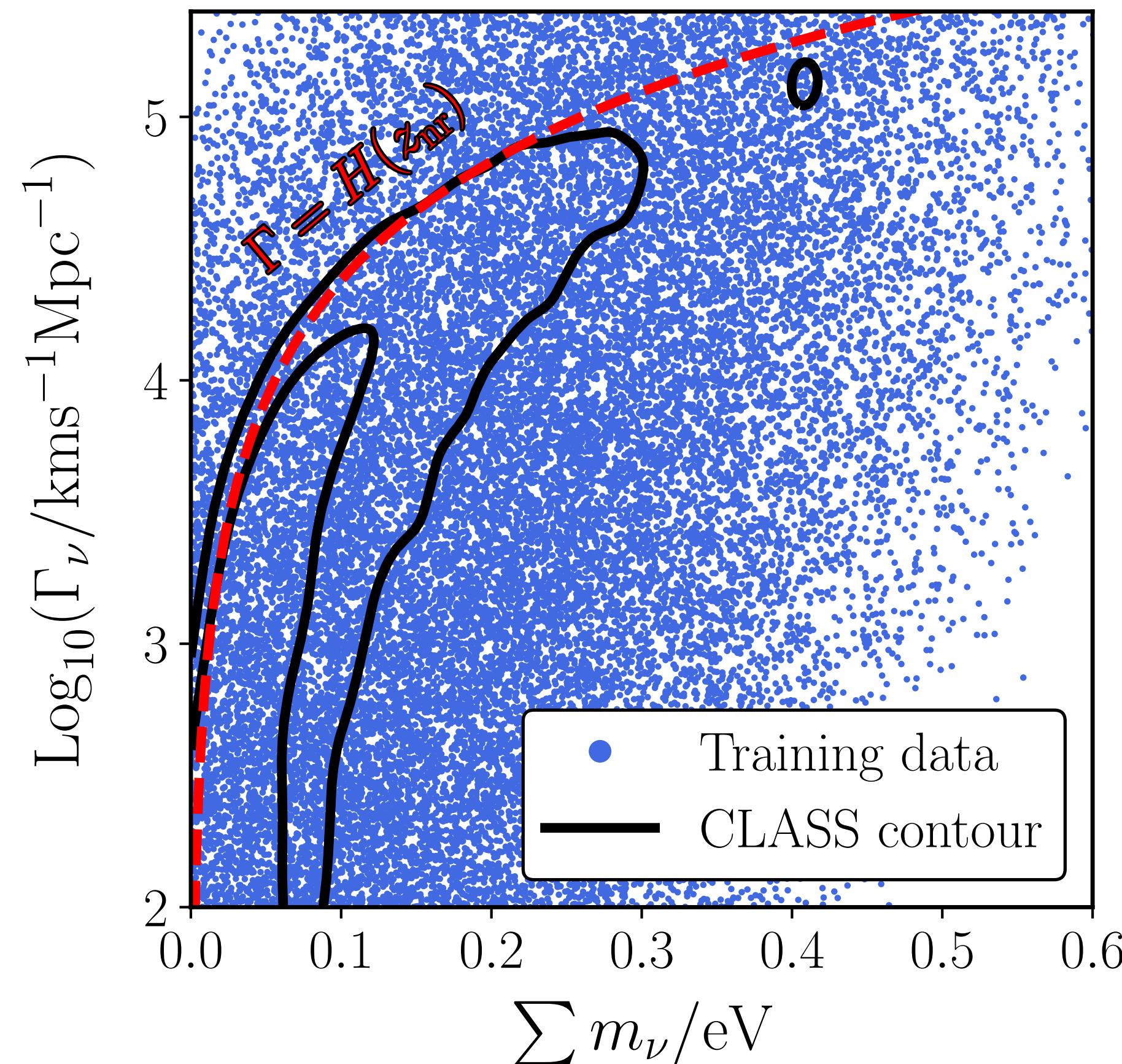


Training data: 2.5×10^4 samples of $\{\theta, x\}$ in the 8-dimensional hypersphere

$$\theta = \{\omega_b, \omega_c, H_0, \ln(10^{10} A_s), n_s, \tau_{\text{reio}}, m_\nu, \log_{10} \Gamma_\nu\}$$

$$x = \{C_\ell^{\text{TT}}, C_\ell^{\text{EE}}, C_\ell^{\text{TE}}, C_\ell^{\phi\phi}, H(z), D_A(z)\}$$

Building emulator for decaying neutrinos

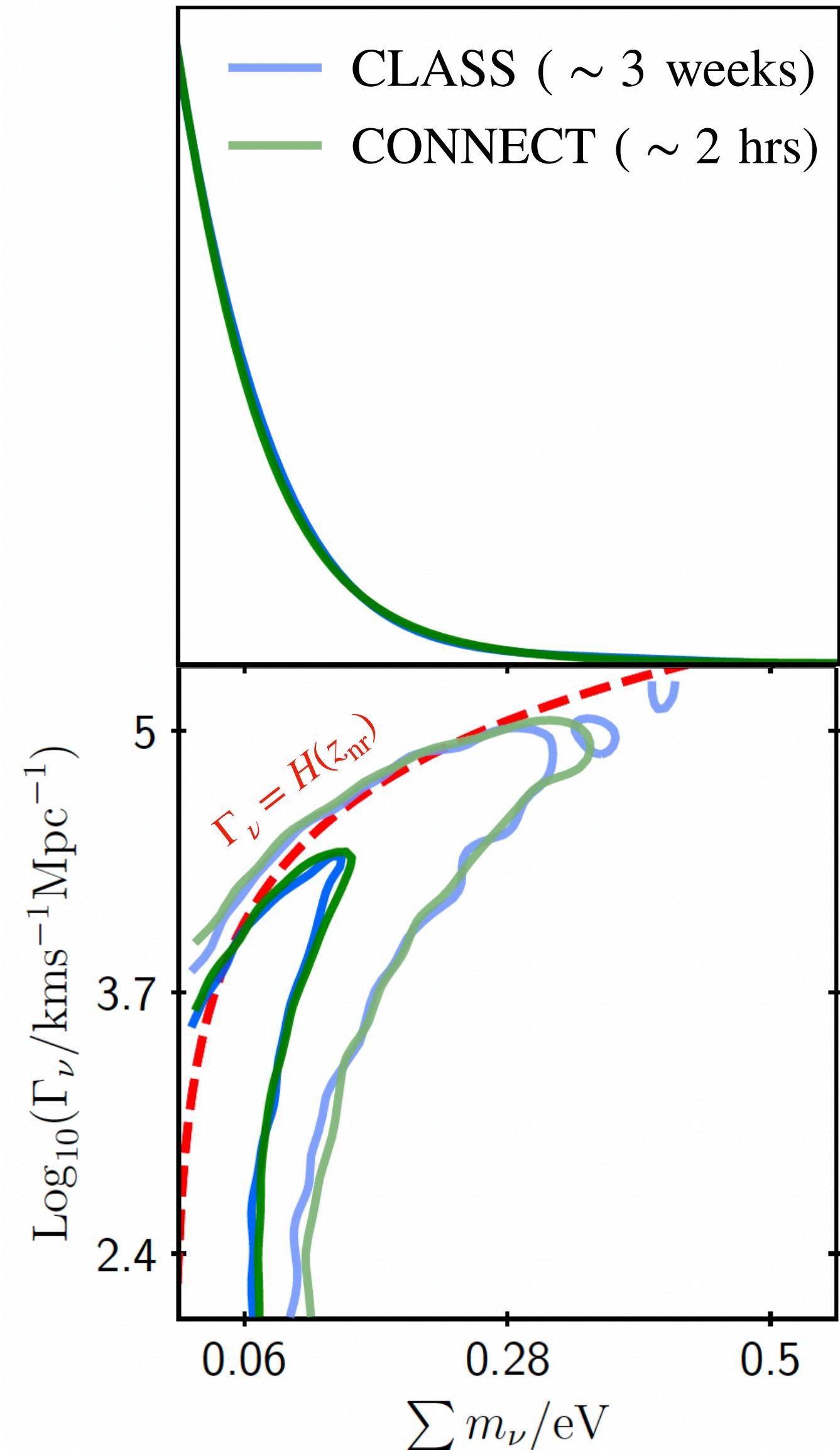


Training data: 2.5×10^4 samples of $\{\theta, x\}$ in the 8-dimensional hypersphere

$$\theta = \{\omega_b, \omega_c, H_0, \ln(10^{10} A_s), n_s, \tau_{\text{reio}}, m_\nu, \log_{10} \Gamma_\nu\}$$
$$x = \{C_\ell^{\text{TT}}, C_\ell^{\text{EE}}, C_\ell^{\text{TE}}, C_\ell^{\phi\phi}, H(z), D_A(z)\}$$

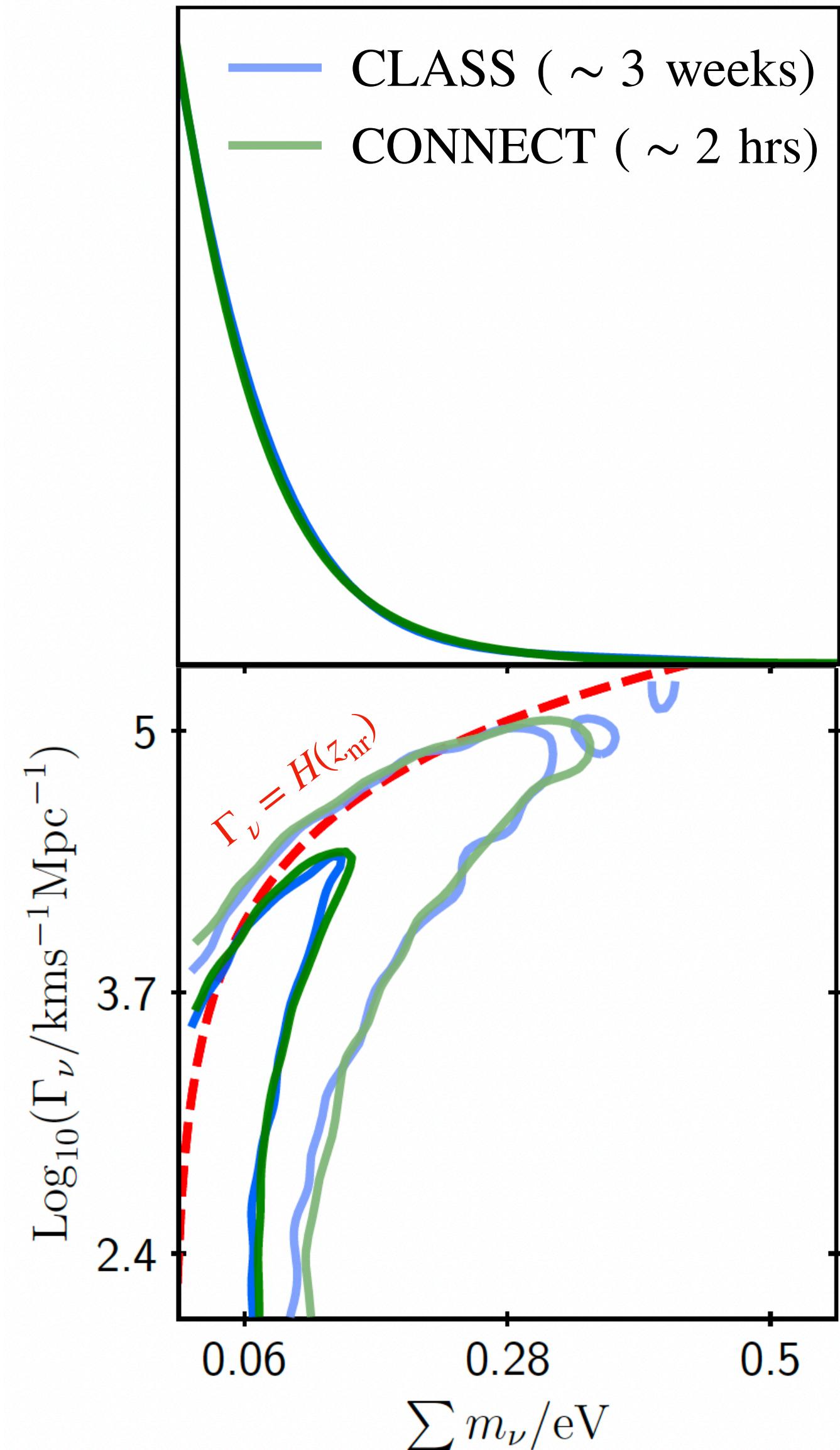
Data generation took ~ 1 day on 128 CPUs
(training the NNs was much faster)

Cosmological constraints



CONNECT posteriors are in good agreement
with CLASS, while being $\times 250$ faster

Cosmological constraints

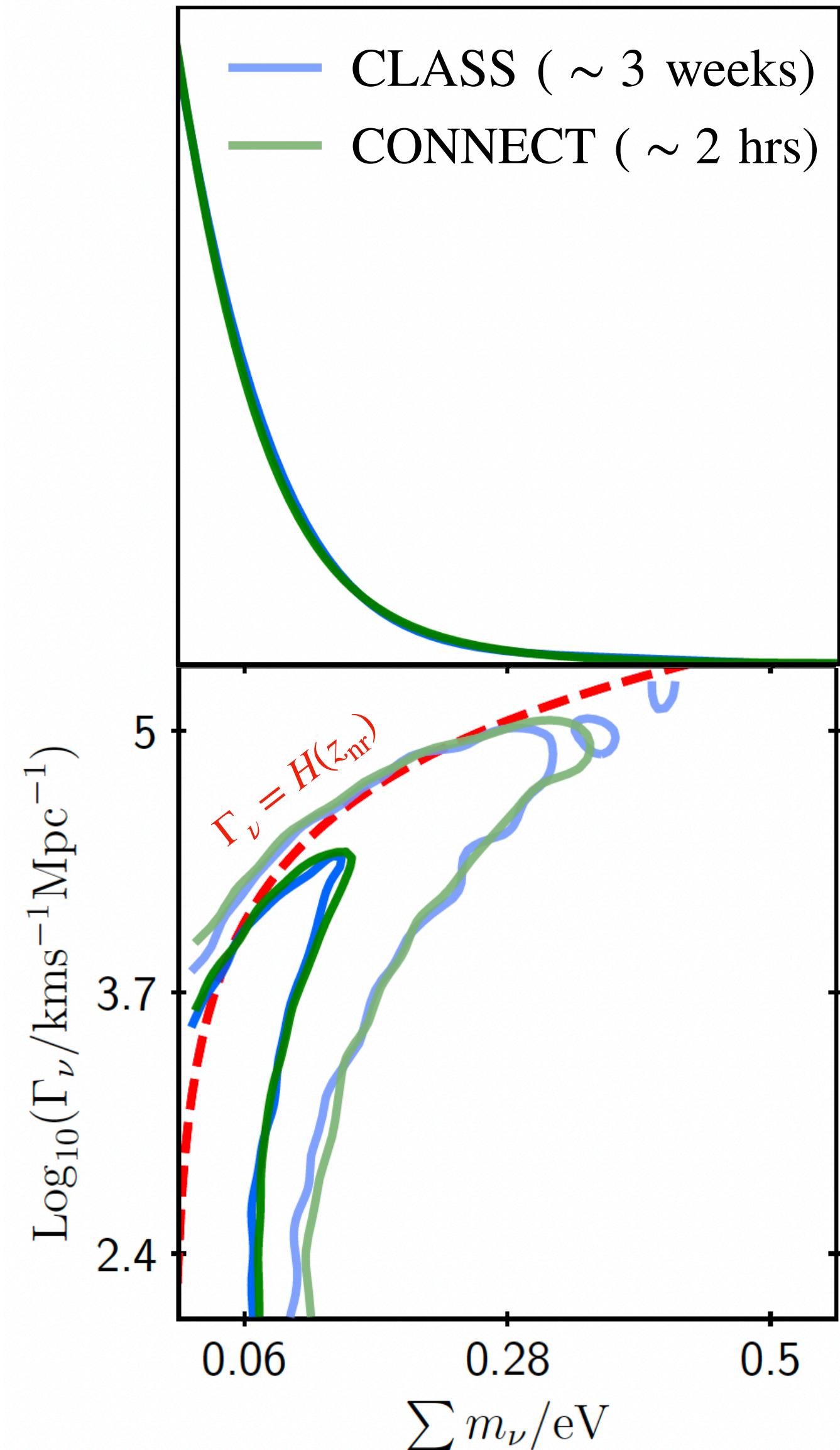


CONNECT posteriors are in good agreement with CLASS, while being $\times 250$ faster

New mass bound:

$$\sum m_\nu < 0.24 \text{ eV} \quad (95\%, \text{ DESI DR2+CMB [Plik]})$$

Cosmological constraints



CONNECT posteriors are in good agreement with CLASS, while being $\times 250$ faster

New mass bound:

$$\sum m_\nu < 0.24 \text{ eV} \quad (95\%, \text{ DESI DR2+CMB [Plik]})$$

Next step: derive bounds for neutrino decays with realistic mass splittings $\nu_i \rightarrow \nu_j + \phi$

Based on arXiv:2403.14750
arXiv:2506.XXXX

with Guadalupe Cañas-Herrera, Matteo
Martinelli, Oleg Savchenko, Noemi Anau
Montel & Christoph Weniger

2.

Simulation-based inference

For efficient inference from
Euclid data, with applications
to **evolving dark energy**

Bayesian inference

\mathbf{x}_0 : Data

θ : Parameters

Posterior	Likelihood	Prior
$p(\theta \mathbf{x}_0)$	$\propto p(\mathbf{x}_0 \theta)$	$p(\theta)$

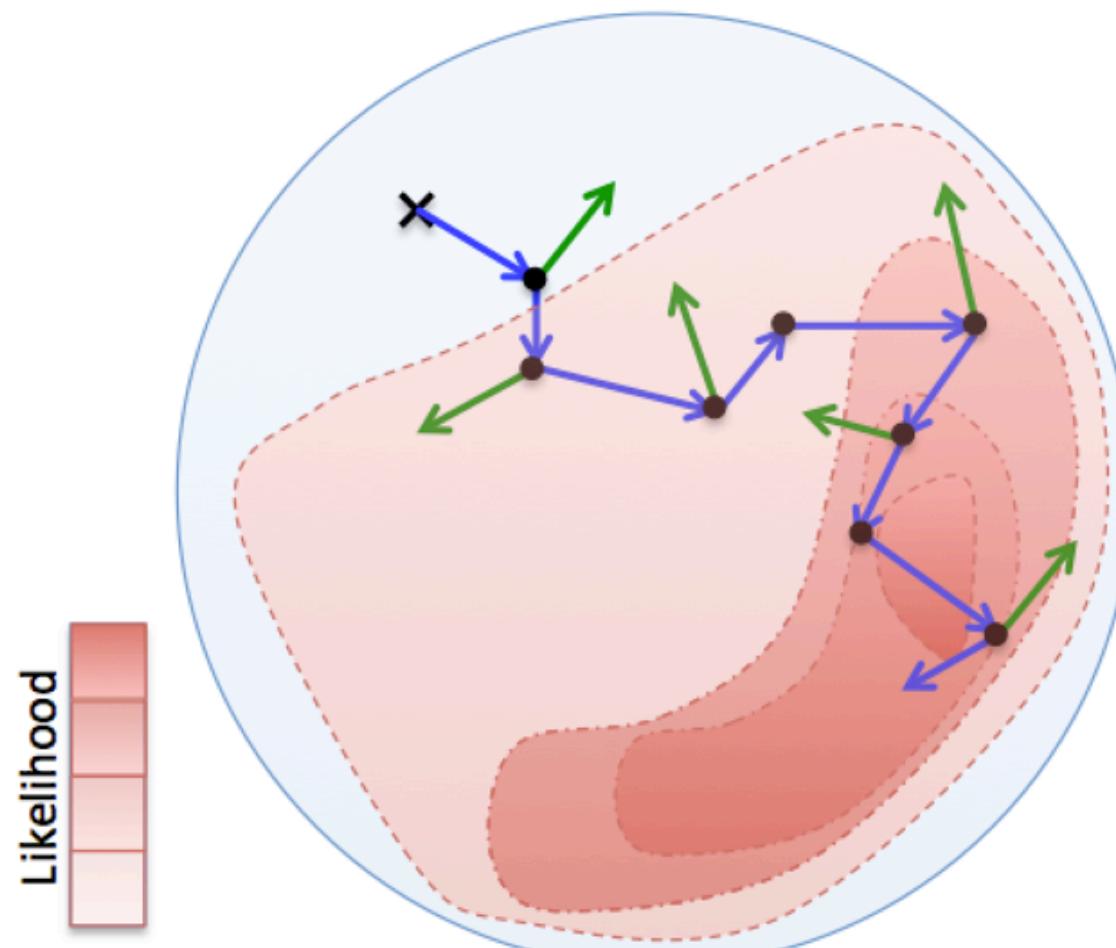
Bayesian inference

\mathbf{x}_0 : Data

θ : Parameters

Posterior	Likelihood	Prior
$p(\theta \mathbf{x}_0)$	$\propto p(\mathbf{x}_0 \theta)$	$p(\theta)$

Metropolis-Hastings algorithm

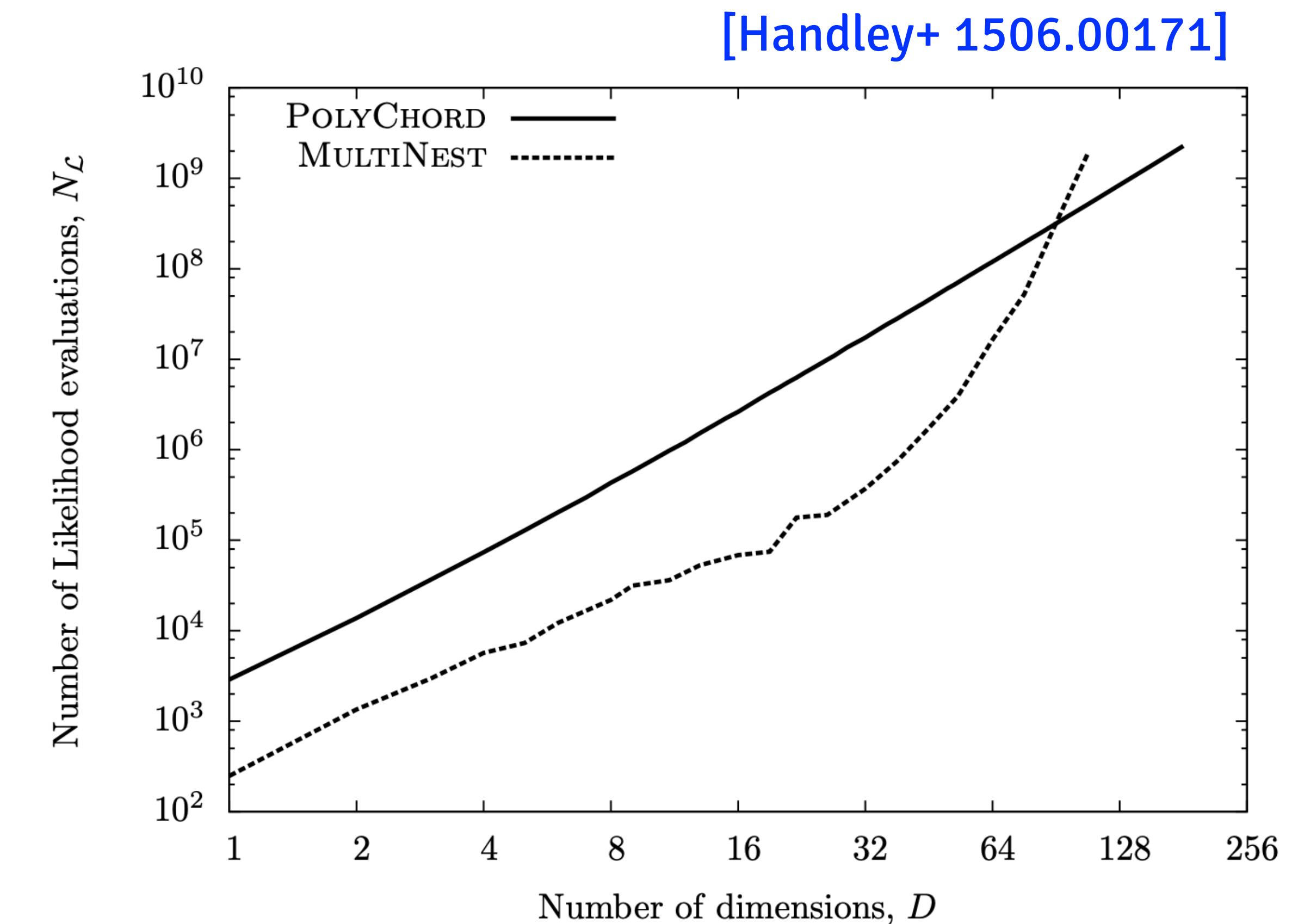


Traditional **likelihood-based** methods allow to get samples from the **full joint posterior** for some fixed data \mathbf{x}_0

$$\theta \sim p(\theta | \mathbf{x}_0), \quad \text{for } \theta \in \mathbb{R}^D$$

Current challenges

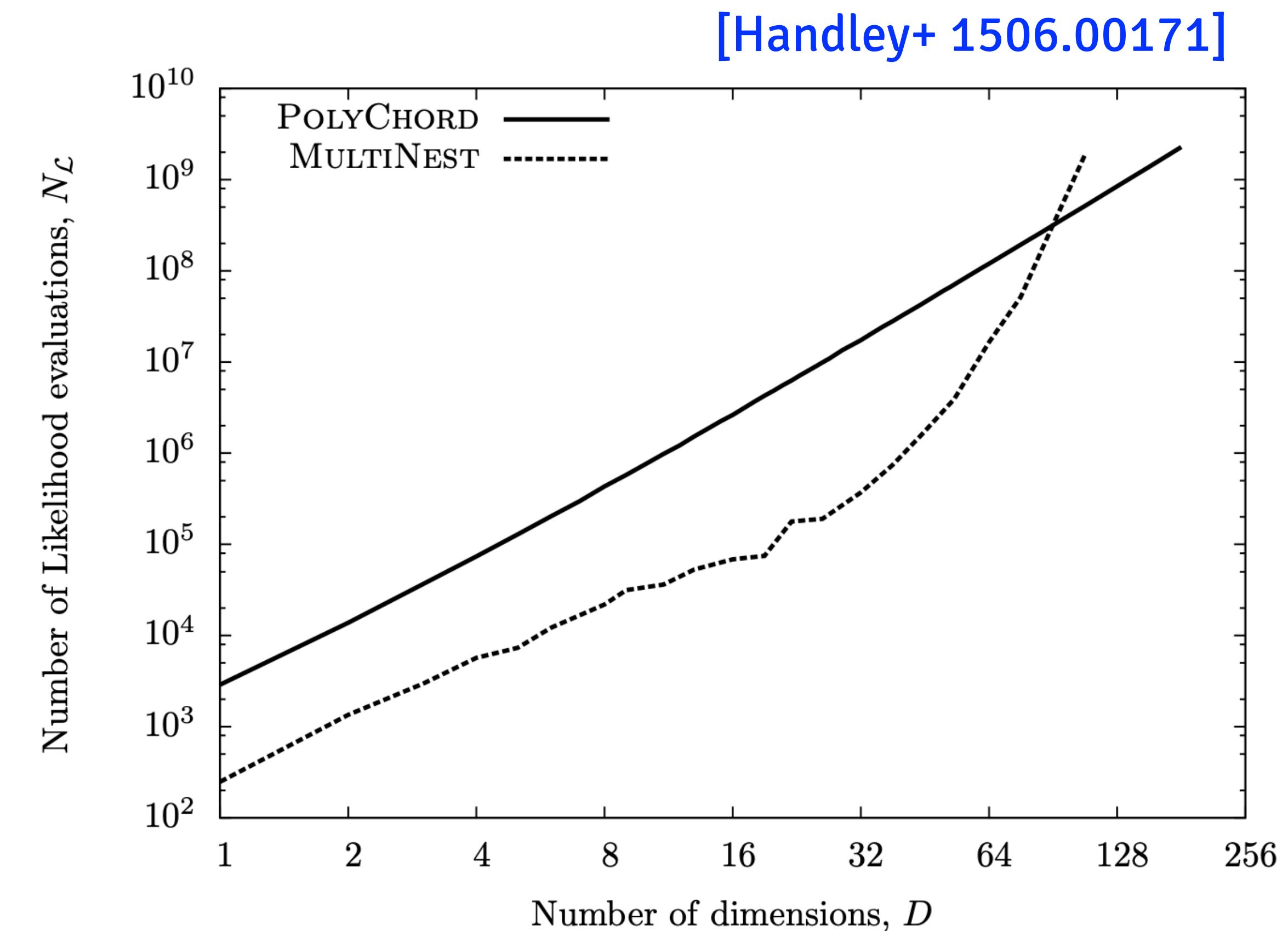
MCMC methods **scale poorly** with the dimensionality



Current challenges

MCMC methods **scale poorly** with the dimensionality

For surveys like Euclid we expect
 $\sim 50 - 100$ nuisance params!

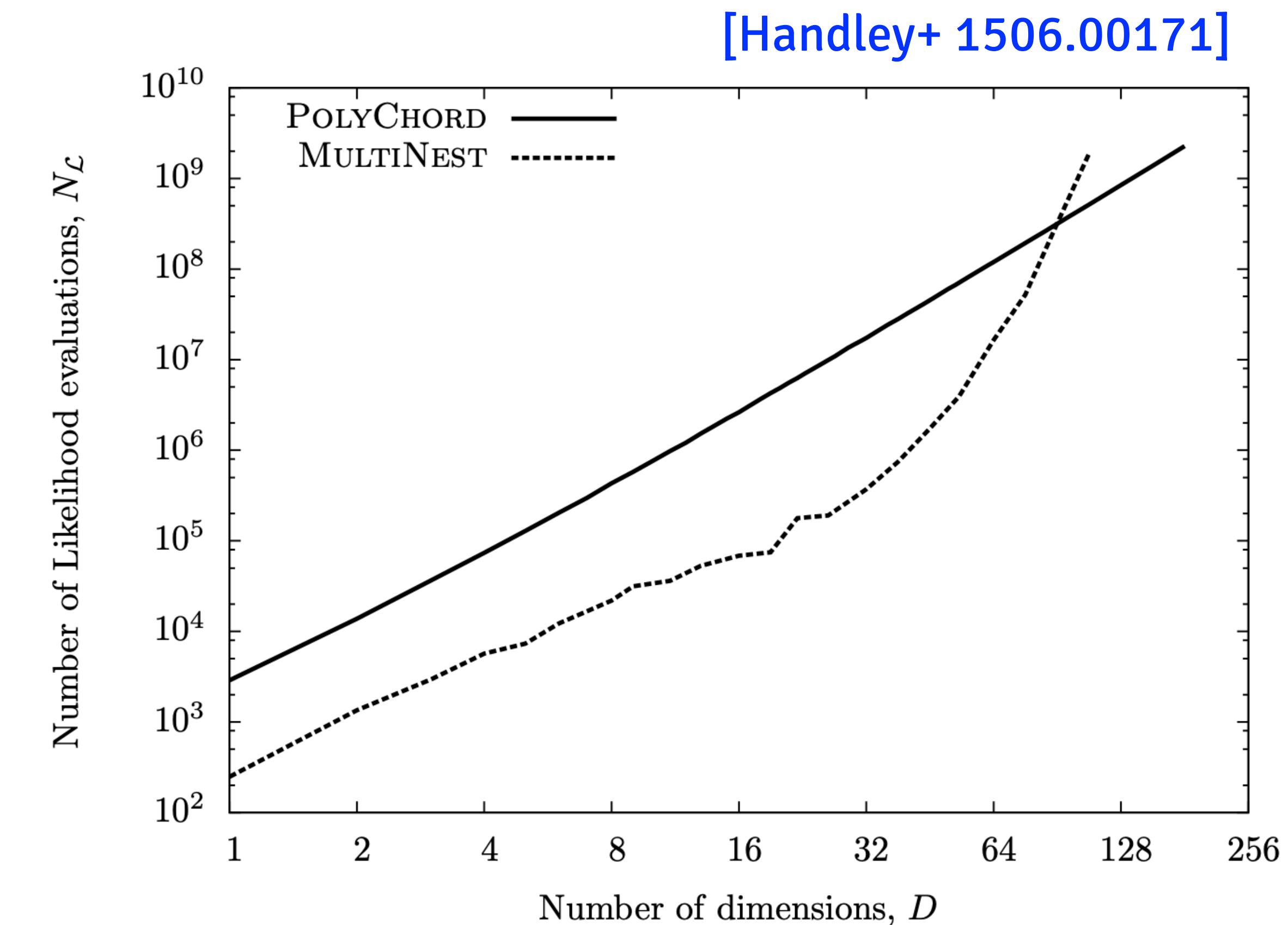


Current challenges

MCMC methods **scale poorly** with the dimensionality

For surveys like Euclid we expect
 $\sim 50 - 100$ nuisance params!

Often the full **likelihood** function is **intractable**



Simulation-based inference (SBI)

(a.k.a. likelihood-free or implicit inference)

“Can we still do Bayesian inference if all we can do is simulate the data?”

Simulation-based inference (SBI)

(a.k.a. likelihood-free or implicit inference)

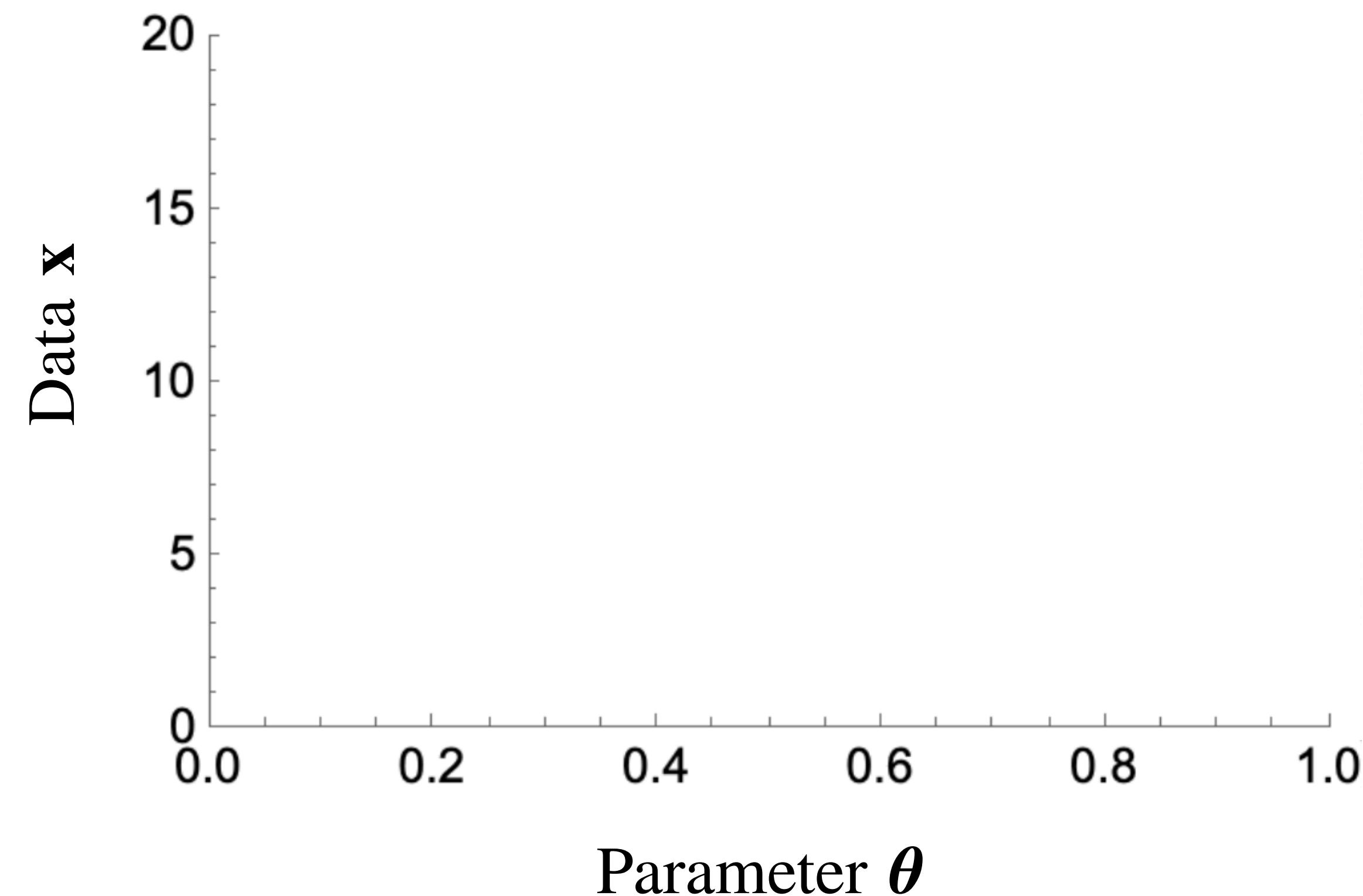
“Can we still do Bayesian inference if all we can do is simulate the data?”

Simulator mapping from
parameters θ to data x

$x \sim p(x | \theta)$
(implicit likelihood)

Simulation-based inference (SBI)

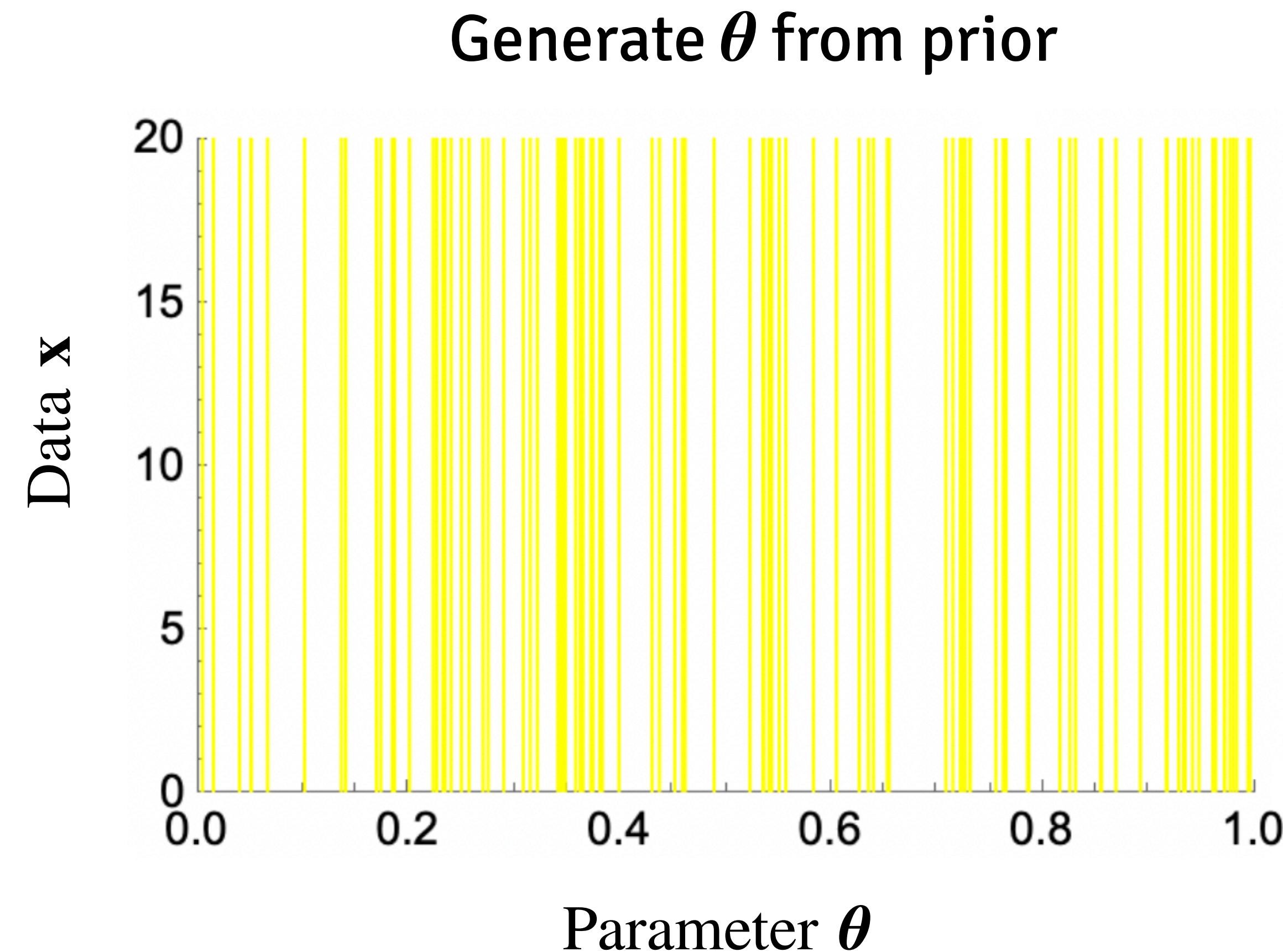
(a.k.a. likelihood-free or implicit inference)



[Credit: B. Wandelt]

Simulation-based inference (SBI)

(a.k.a. likelihood-free or implicit inference)

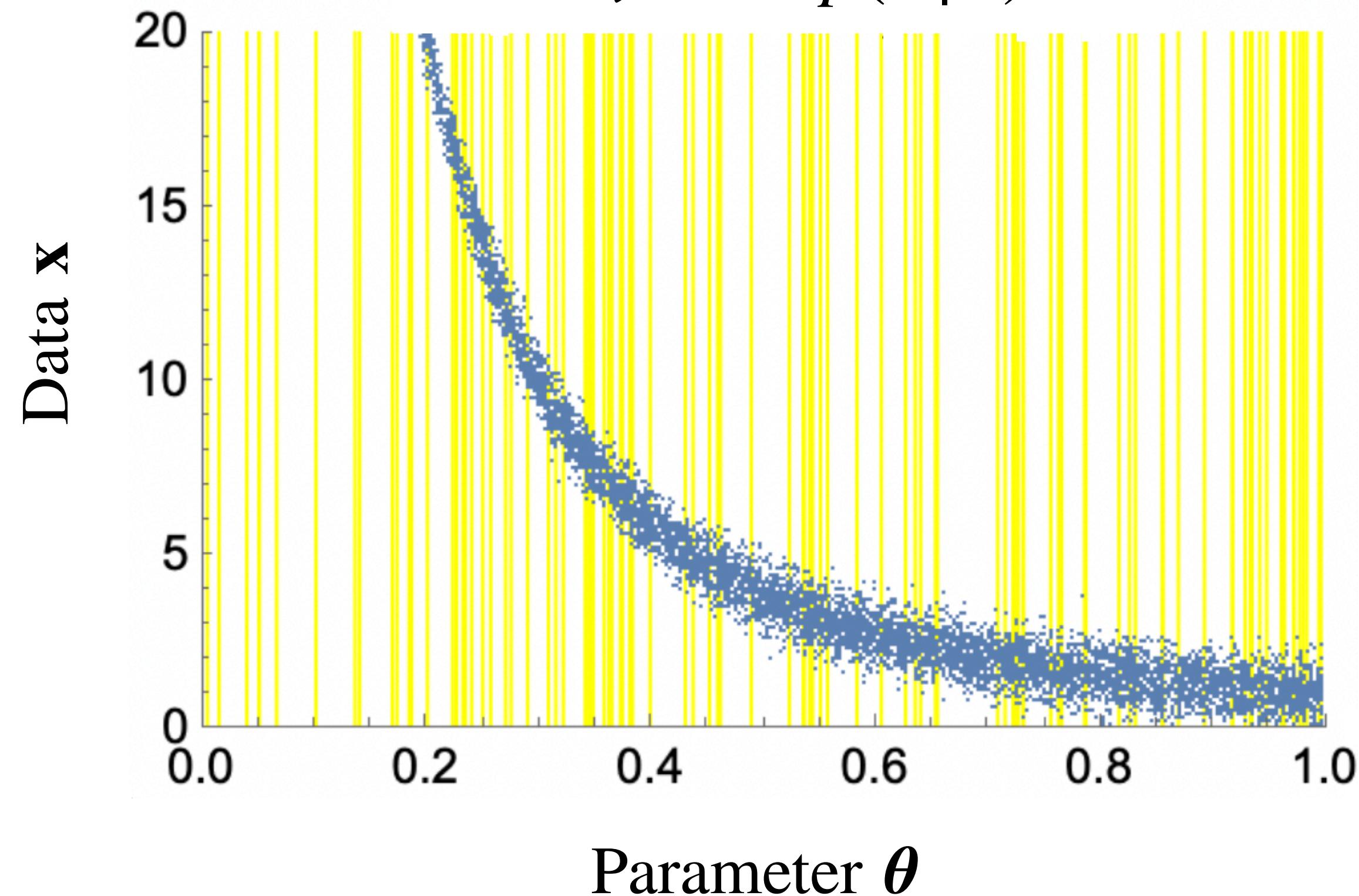


[Credit: B. Wandelt]

Simulation-based inference (SBI)

(a.k.a. likelihood-free or implicit inference)

Simulate \mathbf{x} for each θ
i.e., $\mathbf{x} \sim p(\mathbf{x} | \theta)$

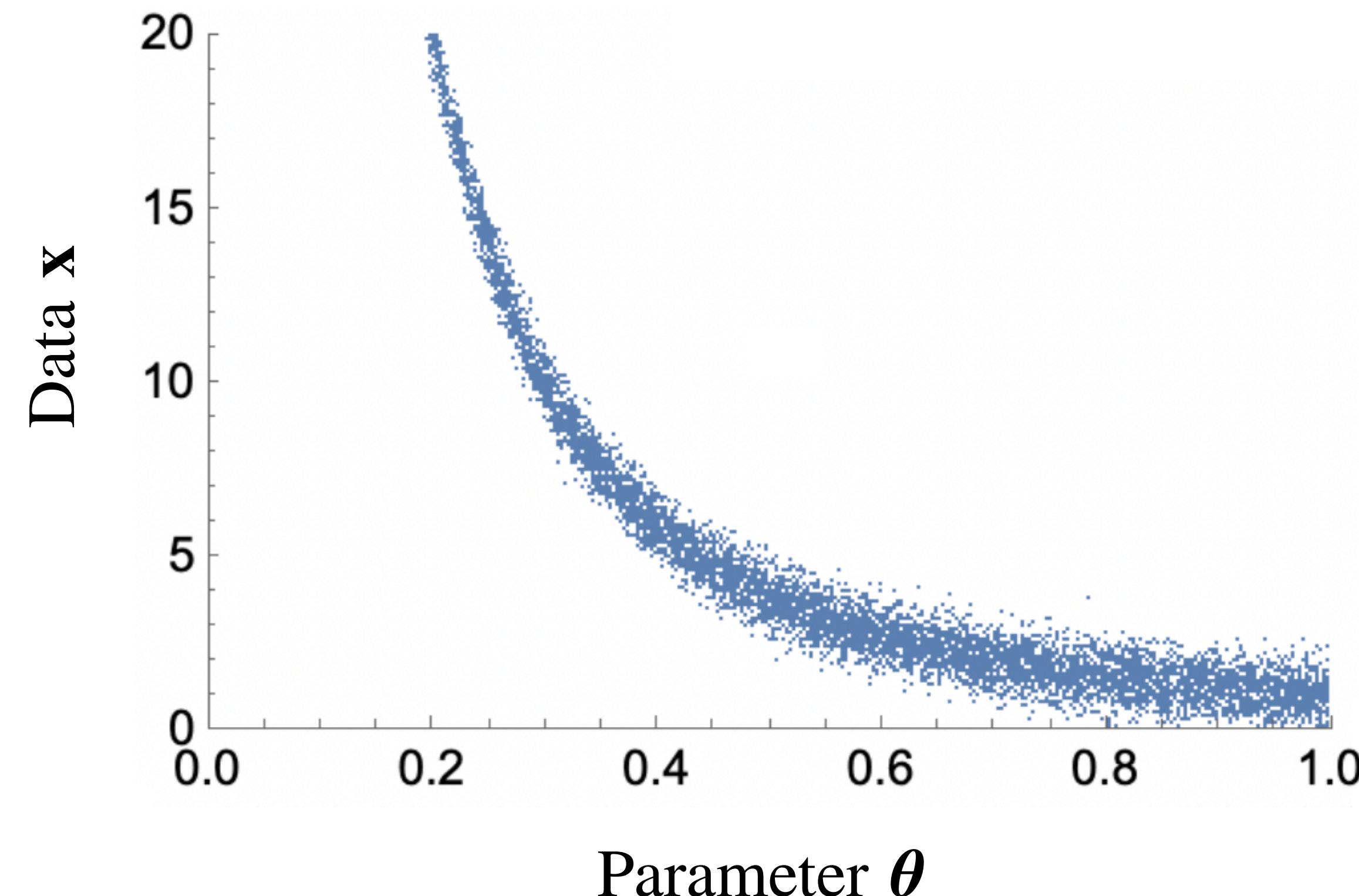


[Credit: B. Wandelt]

Simulation-based inference (SBI)

(a.k.a. likelihood-free or implicit inference)

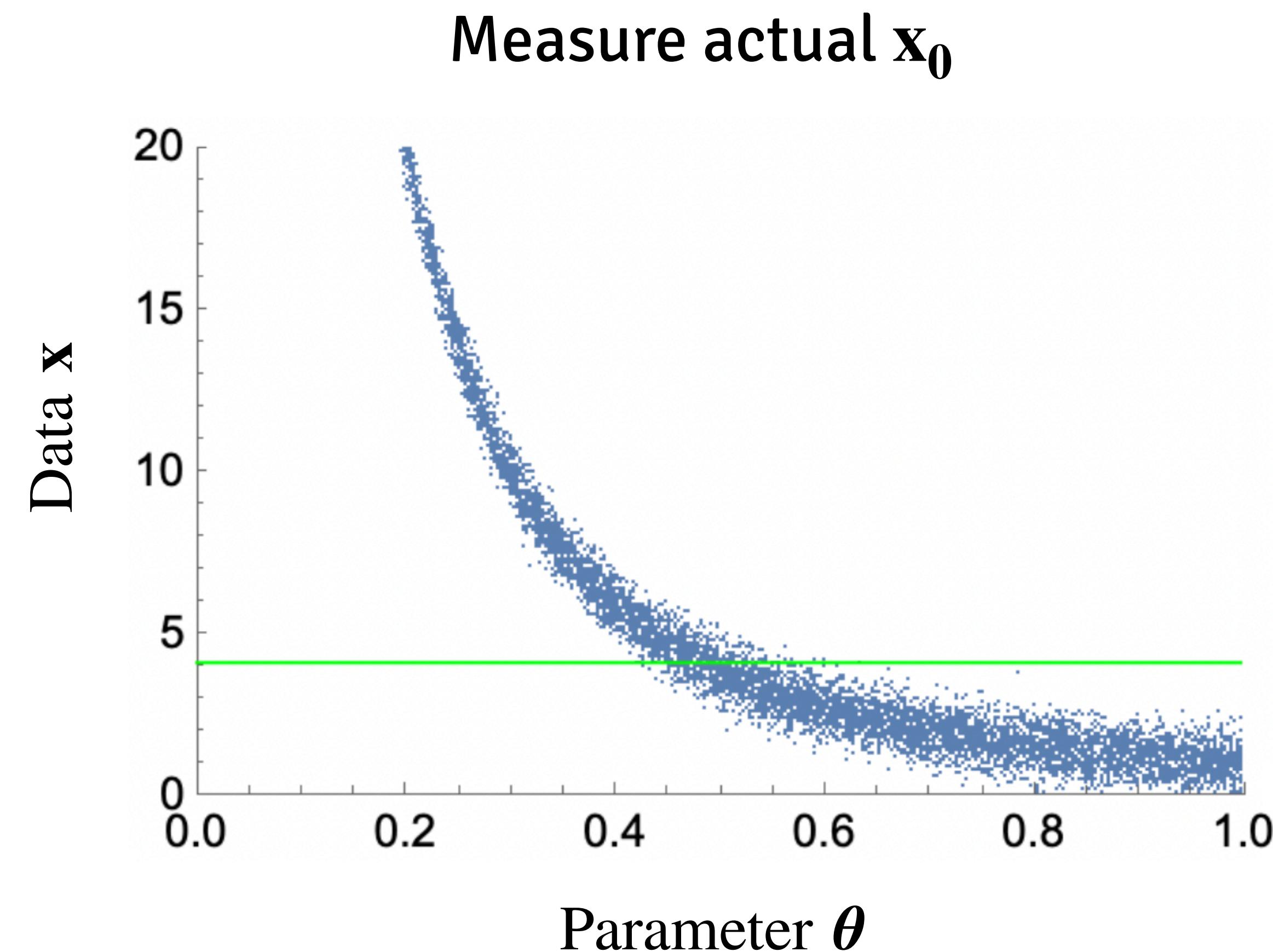
This is a sample from $p(\theta, x)$



[Credit: B. Wandelt]

Simulation-based inference (SBI)

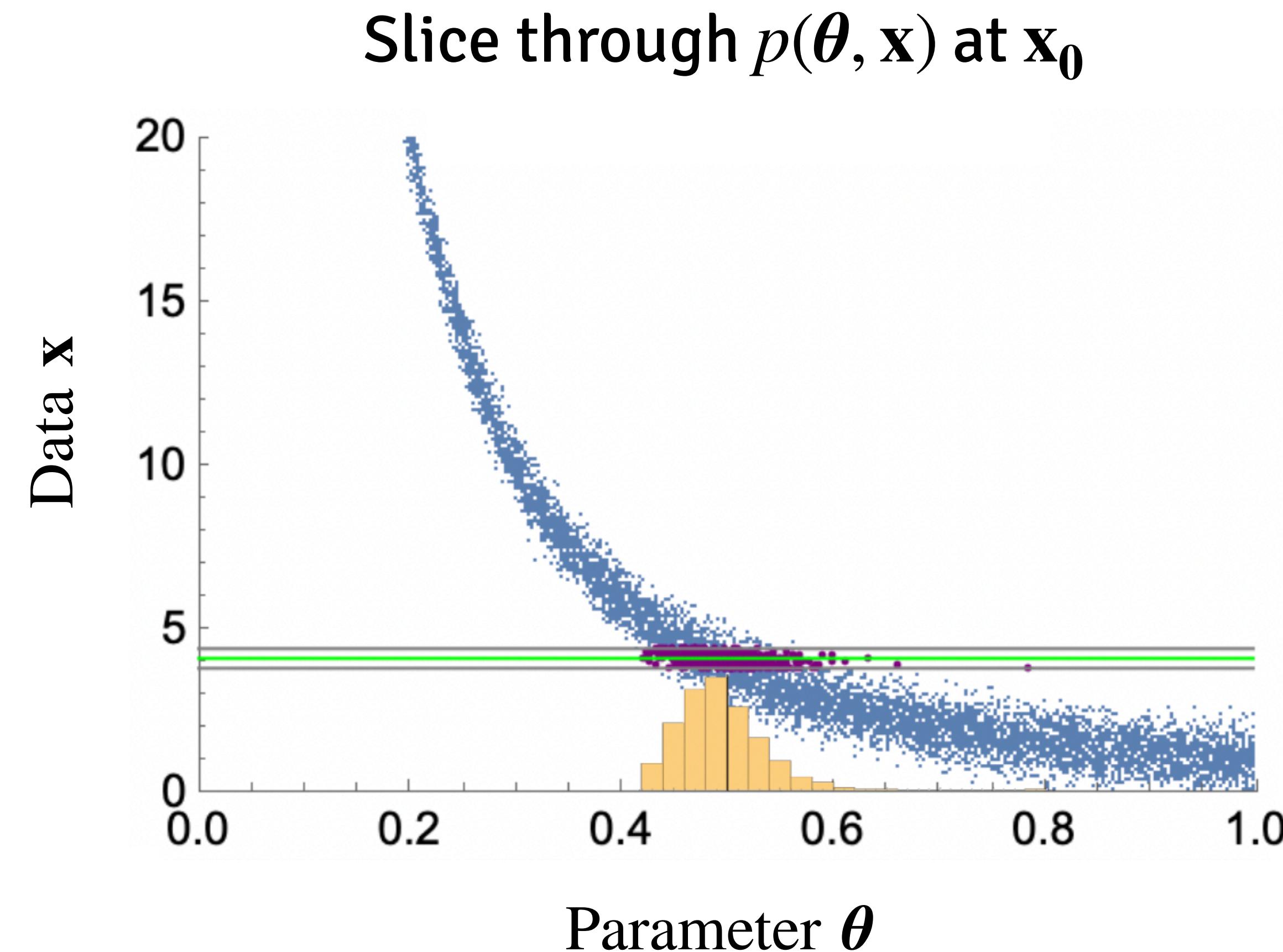
(a.k.a. likelihood-free or implicit inference)



[Credit: B. Wandelt]

Simulation-based inference (SBI)

(a.k.a. likelihood-free or implicit inference)

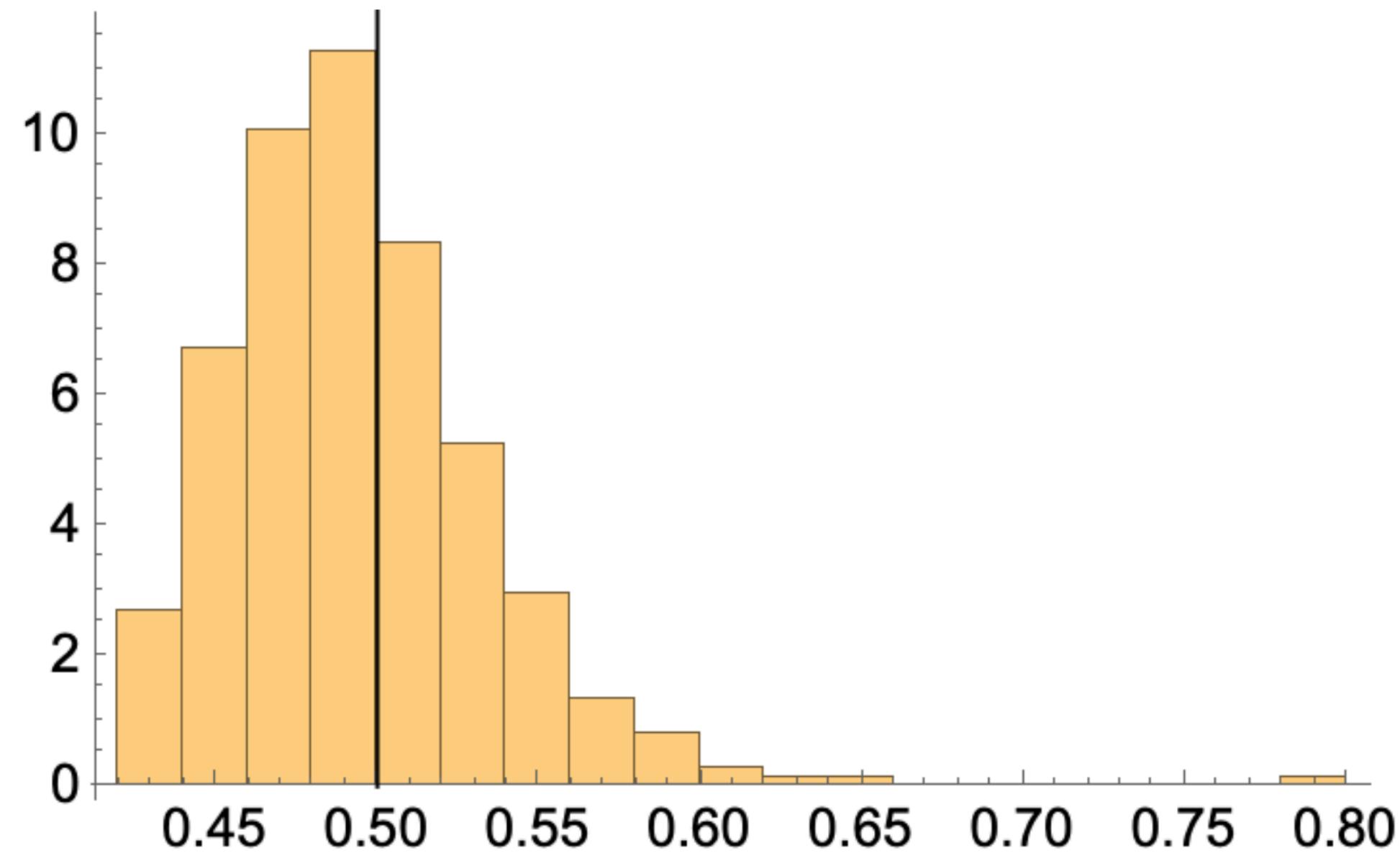


[Credit: B. Wandelt]

Simulation-based inference (SBI)

(a.k.a. likelihood-free or implicit inference)

Posterior $p(\theta | \mathbf{x}_0)$



[Credit: B. Wandelt]

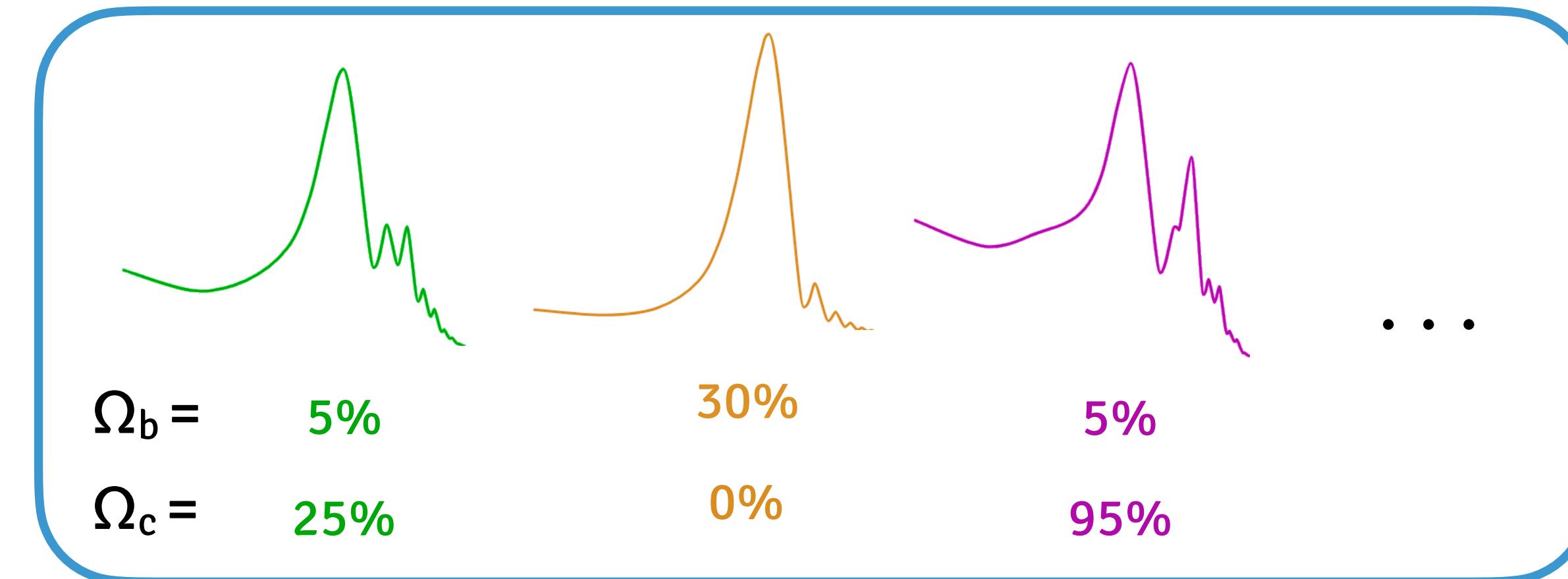
Usual steps in SBI

I. **Simulation:** get N samples $\{(\mathbf{x}^{(1)}, \boldsymbol{\theta}^{(1)}), (\mathbf{x}^{(2)}, \boldsymbol{\theta}^{(2)}), \dots, (\mathbf{x}^{(N)}, \boldsymbol{\theta}^{(N)})\}$

Usual steps in SBI

I. **Simulation:** get N samples $\{(\mathbf{x}^{(1)}, \theta^{(1)}), (\mathbf{x}^{(2)}, \theta^{(2)}), \dots, (\mathbf{x}^{(N)}, \theta^{(N)})\}$

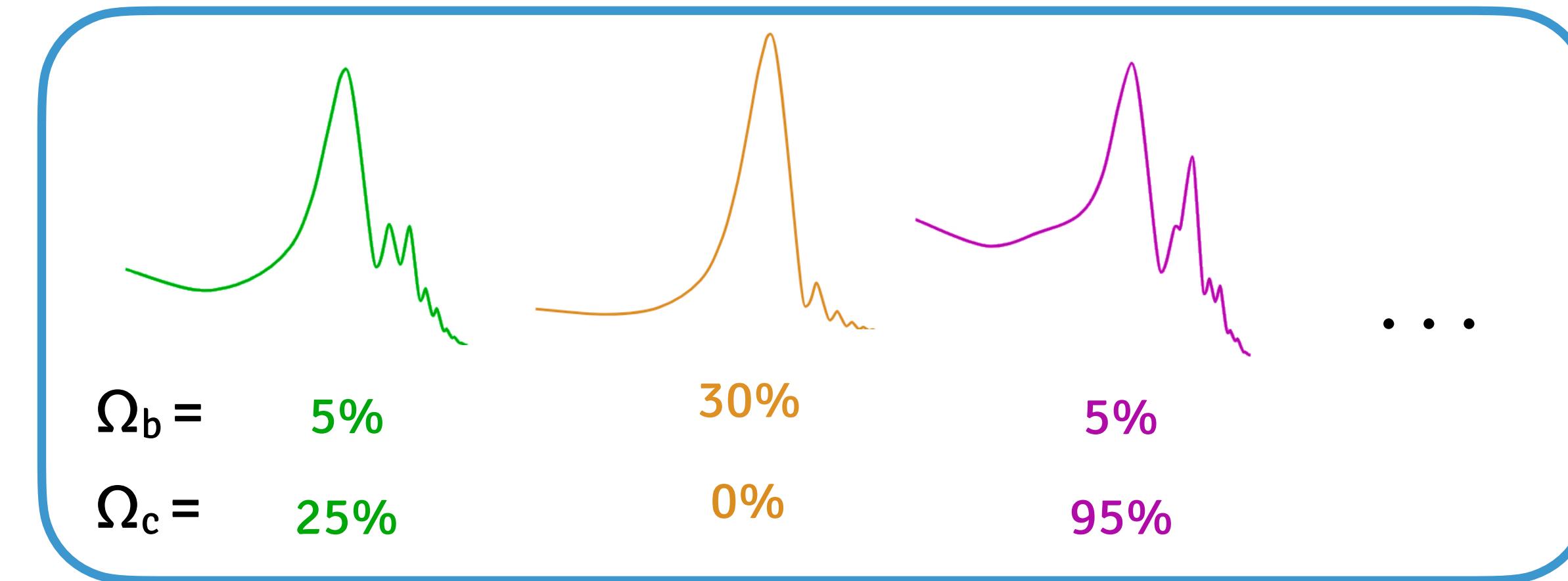
Ex: CMB simulator



Usual steps in SBI

I. **Simulation:** get N samples $\{(\mathbf{x}^{(1)}, \boldsymbol{\theta}^{(1)}), (\mathbf{x}^{(2)}, \boldsymbol{\theta}^{(2)}), \dots, (\mathbf{x}^{(N)}, \boldsymbol{\theta}^{(N)})\}$

Ex: CMB simulator

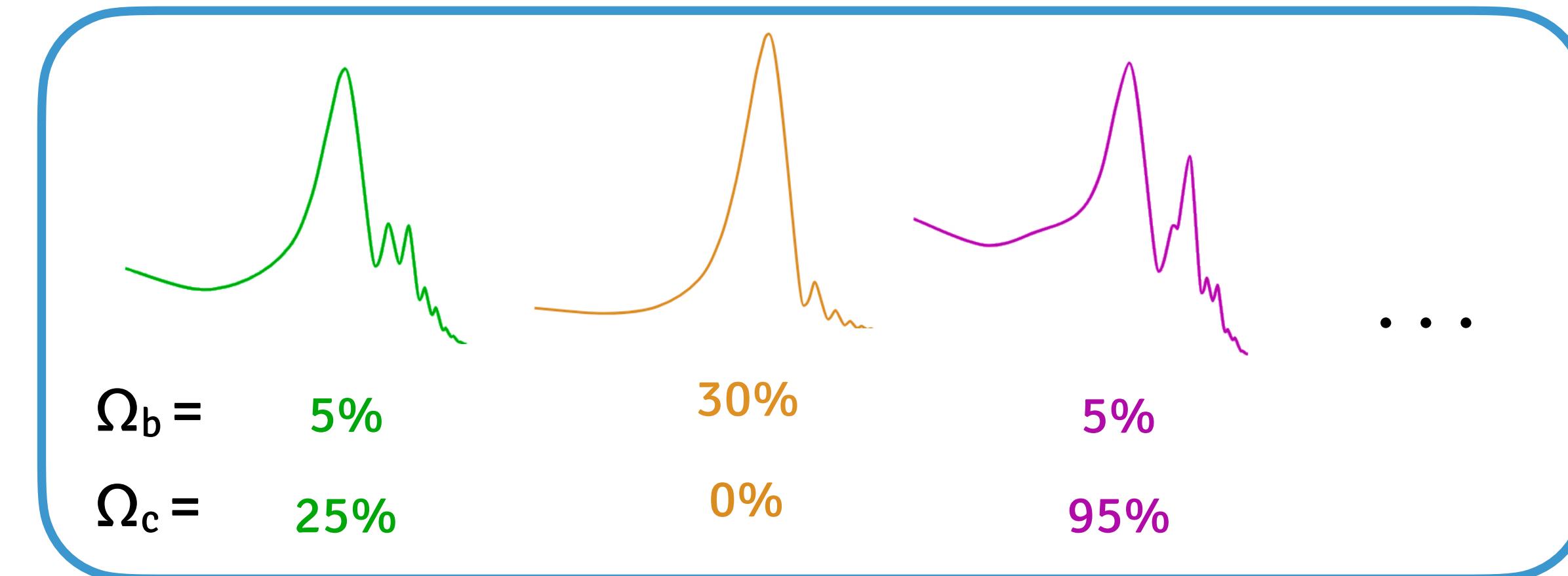


II. **Training:** train a NN to learn posterior $f_{\phi}(\boldsymbol{\theta}, \mathbf{x}) \simeq p(\boldsymbol{\theta} \mid \mathbf{x})$

Usual steps in SBI

I. **Simulation:** get N samples $\{(\mathbf{x}^{(1)}, \boldsymbol{\theta}^{(1)}), (\mathbf{x}^{(2)}, \boldsymbol{\theta}^{(2)}), \dots, (\mathbf{x}^{(N)}, \boldsymbol{\theta}^{(N)})\}$

Ex: CMB simulator



II. **Training:** train a NN to learn posterior $f_{\phi}(\boldsymbol{\theta}, \mathbf{x}) \simeq p(\boldsymbol{\theta} \mid \mathbf{x})$

III. **Inference:** evaluate trained network at $\mathbf{x} = \mathbf{x}_0$ to get $p(\boldsymbol{\theta} \mid \mathbf{x}_0)$

Neural posterior estimation (**NPE**) $\longrightarrow p(\theta | \mathbf{x})$

SBI comes in many “flavors”:

Neural likelihood estimation (**NLE**) $\longrightarrow p(\mathbf{x} | \theta)$

Neural ratio estimation (**NRE**) $\longrightarrow p(\theta | \mathbf{x})/p(\theta)$

Neural posterior estimation (**NPE**) $\longrightarrow p(\theta | \mathbf{x})$

SBI comes in many “flavors”:

Neural likelihood estimation (**NLE**) $\longrightarrow p(\mathbf{x} | \theta)$

Neural ratio estimation (**NRE**) $\longrightarrow p(\theta | \mathbf{x})/p(\theta)$

We focus on a recent algorithm:

MNRE = Marginal Neural Ratio Estimation

Implemented in [Swyft](#) [Miller et al. 2011.13951]

Neural Ratio Estimation

$$\frac{p(\mathbf{x}, \theta)}{p(\mathbf{x})p(\theta)} = \frac{p(\theta | \mathbf{x})}{p(\theta)}$$

MNRE

in a nutshell

$$(\mathbf{x}, \theta) \sim p(\mathbf{x}, \theta)$$

$$\begin{aligned}\Omega_b &= 5\% \\ \Omega_c &= 25\%\end{aligned}$$

$$\begin{aligned}30\% \\ 0\%\end{aligned}$$

$$\begin{aligned}5\% \\ 95\%\end{aligned}$$

$$(\mathbf{x}, \theta) \sim p(\mathbf{x})p(\theta)$$

$$\begin{aligned}\Omega_b &= 5\% \\ \Omega_c &= 25\%\end{aligned}$$

$$\begin{aligned}30\% \\ 0\%\end{aligned}$$

$$\begin{aligned}5\% \\ 95\%\end{aligned}$$

Neural Ratio Estimation

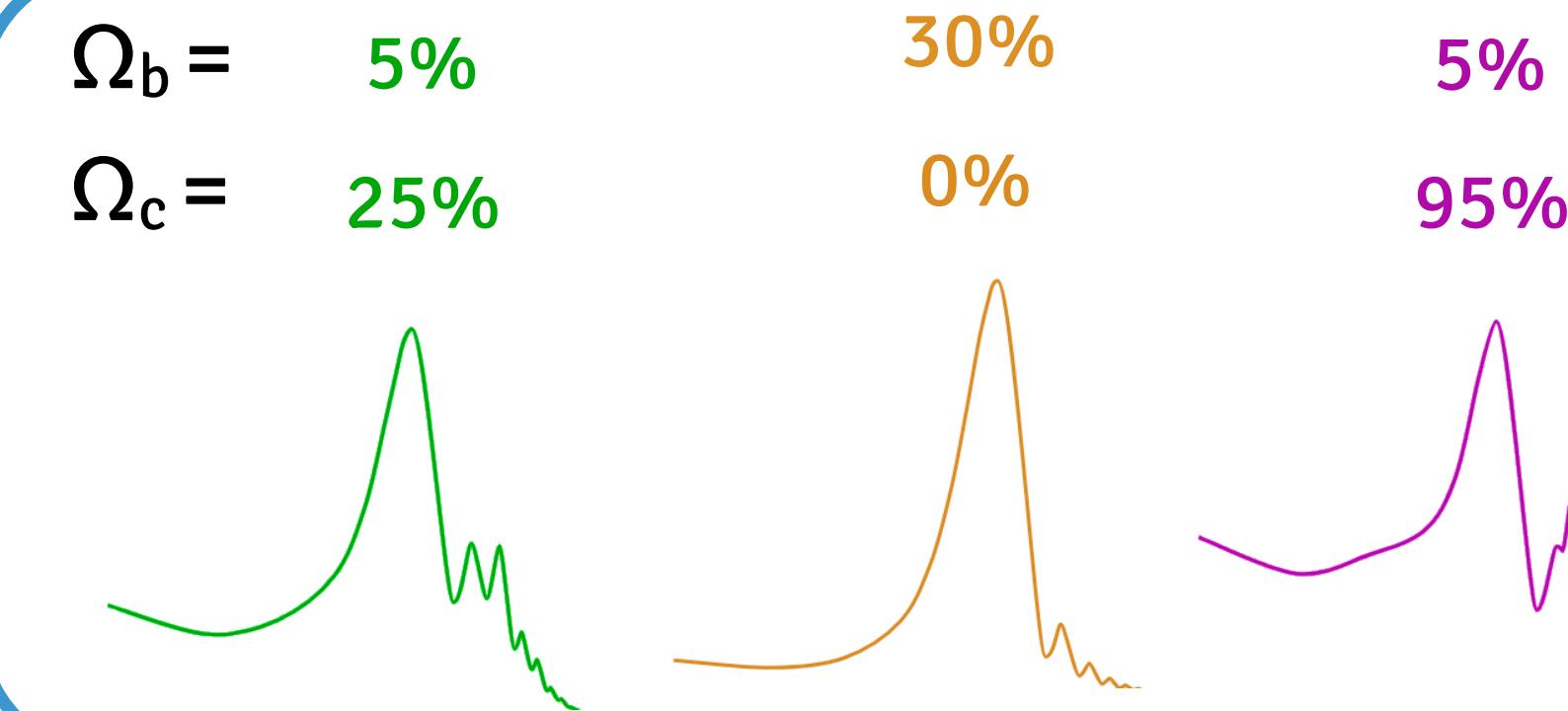
$$\frac{p(\mathbf{x}, \theta)}{p(\mathbf{x})p(\theta)} = \frac{p(\theta | \mathbf{x})}{p(\theta)}$$

MNRE

in a nutshell

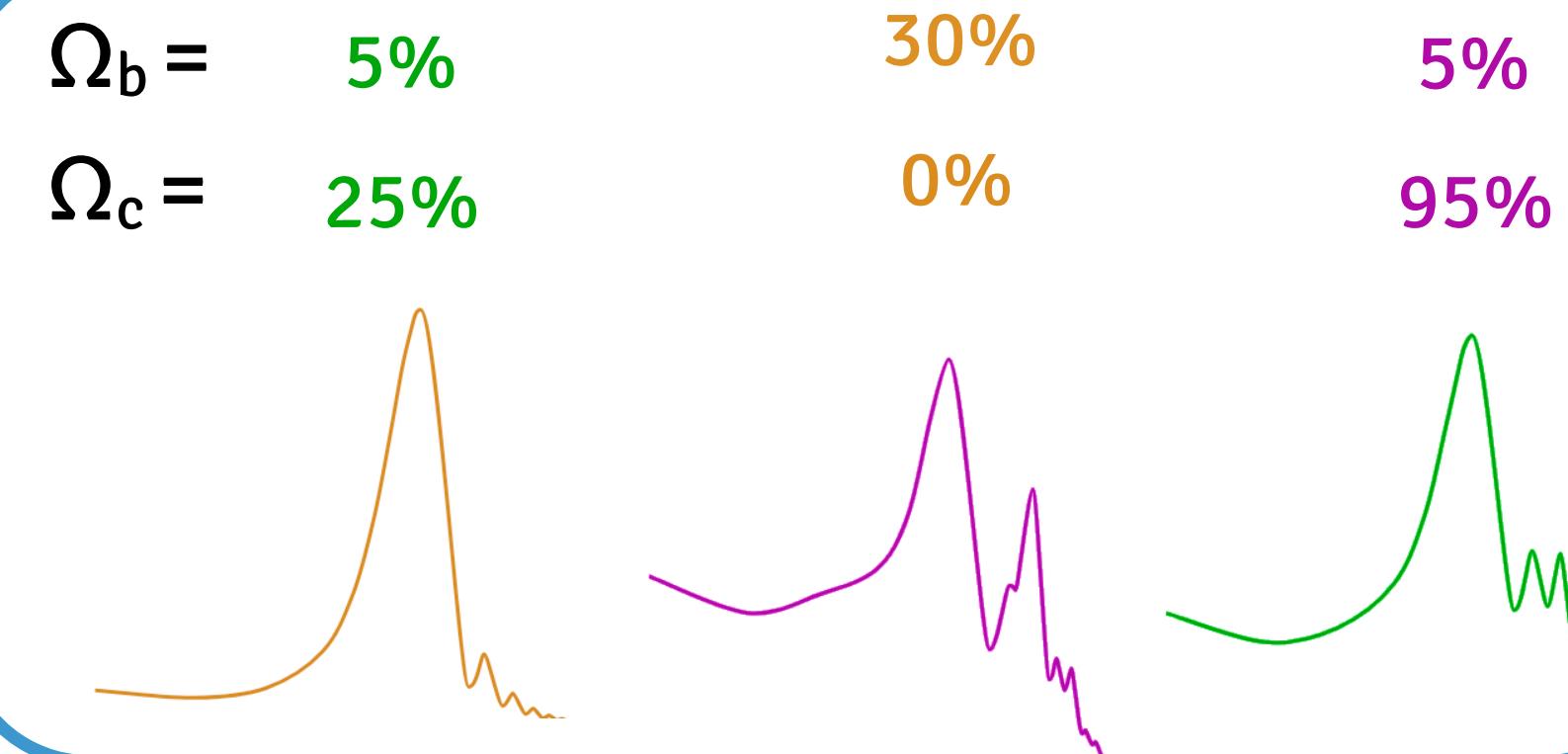
$$(\mathbf{x}, \theta) \sim p(\mathbf{x}, \theta)$$

$$\begin{aligned}\Omega_b &= 5\% \\ \Omega_c &= 25\%\end{aligned}$$



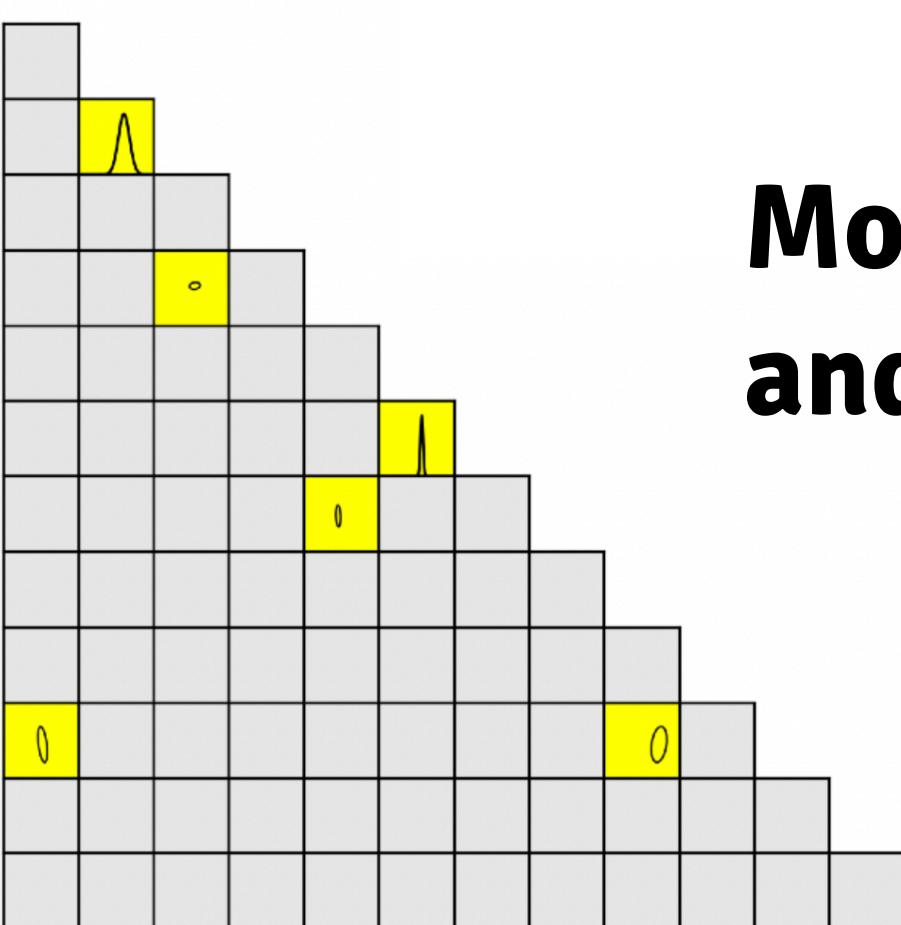
$$(\mathbf{x}, \theta) \sim p(\mathbf{x})p(\theta)$$

$$\begin{aligned}\Omega_b &= 5\% \\ \Omega_c &= 25\%\end{aligned}$$



Focus on marginals

Instead of estimating all parameters, **cherry-pick** the ones we care about



More flexible and efficient!

SBI has already been applied to different LSS surveys:

 BOSS [\[Lemos et al. 2310.15256\]](#)

 DES [\[Jeffrey et al. 2403.02314\]](#)

 KiDS [\[von Wietersheim-Kramsta et al. 2404.15402\]](#)

 HSC [\[Novaes et al. 2409.01301\]](#)

SBI has already been applied to different LSS surveys:

BOSS [Lemos et al. 2310.15256]

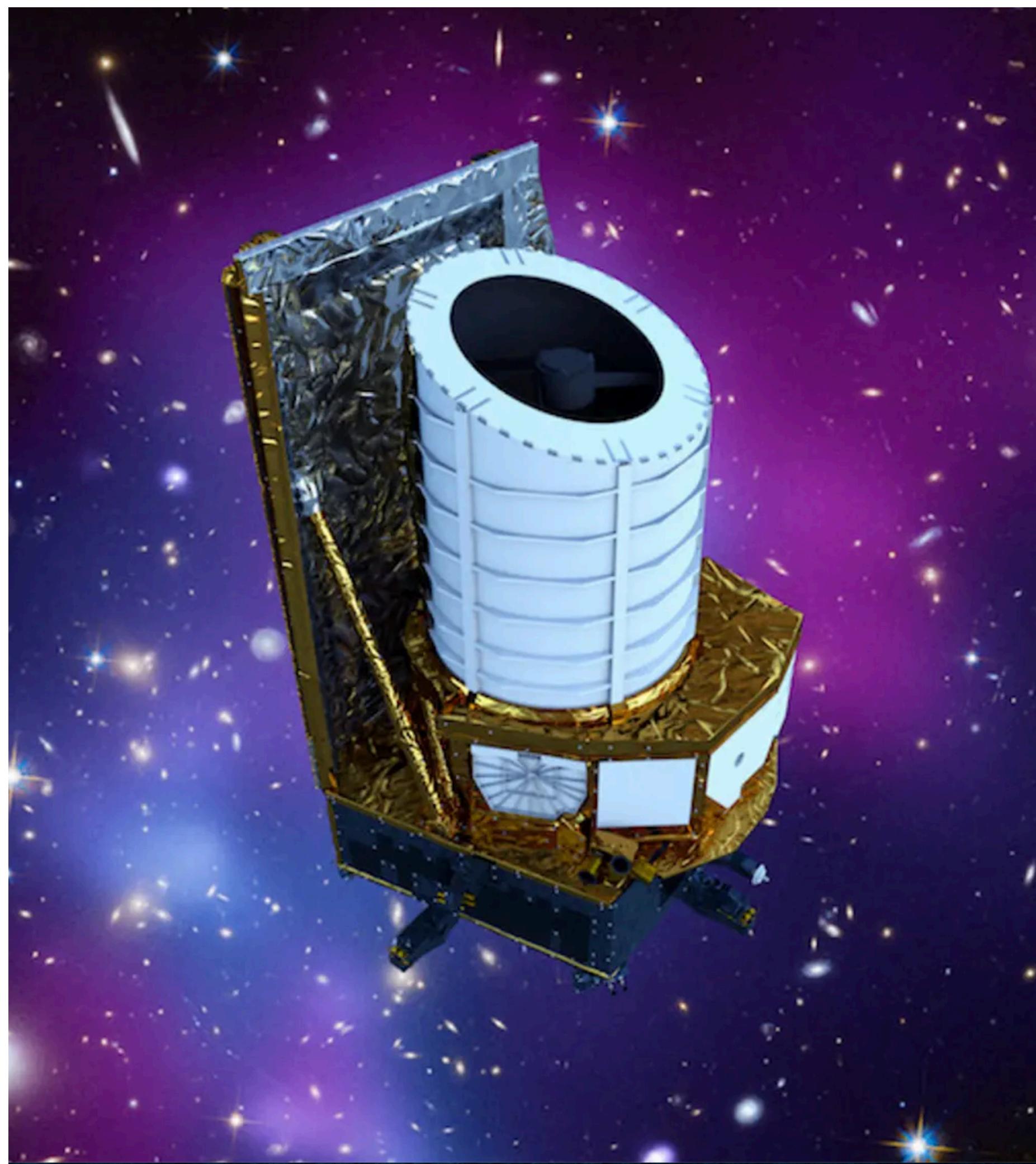
DES [Jeffrey et al. 2403.02314]

KiDS [von Wietersheim-Kramsta et al. 2404.15402]

HSC [Novaes et al. 2409.01301]

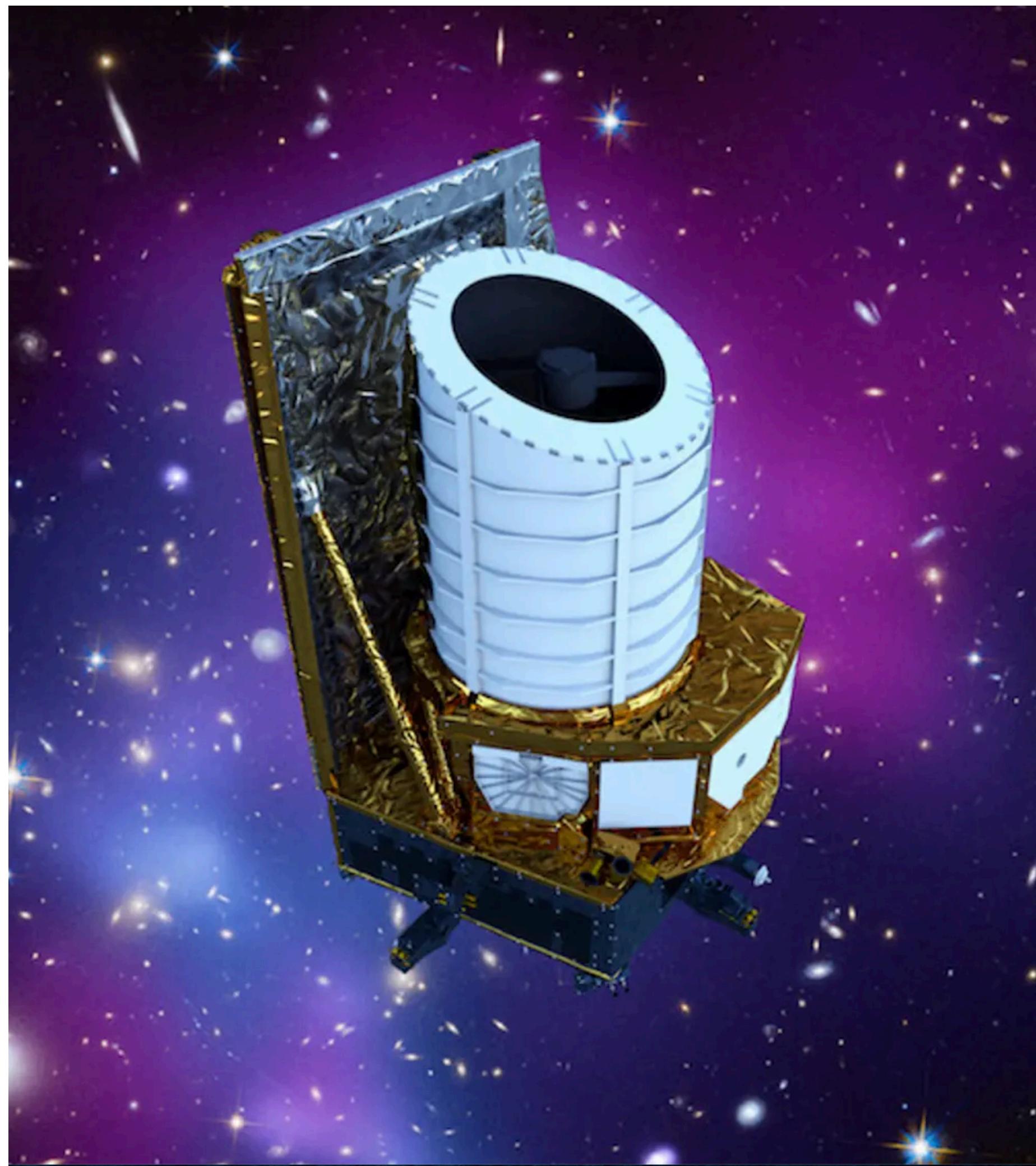
Our goal: apply MNRE to **Euclid** photometric observables

[ESA's Euclid space satellite]



On July 1st 2023, Euclid was launched to L2

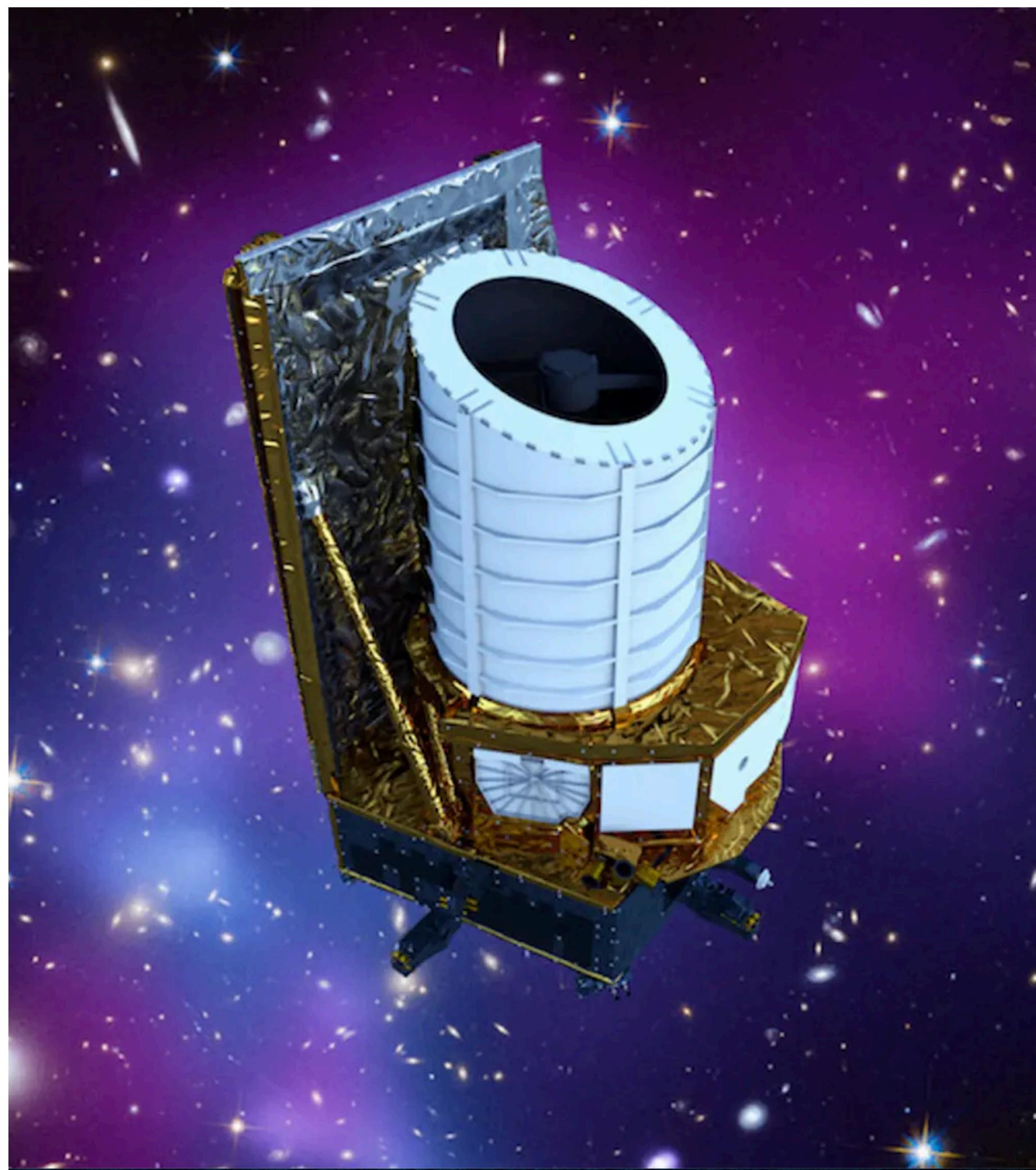
[ESA's Euclid space satellite]



On July 1st 2023, Euclid was launched to L2

For 6 years, Euclid will measure the shapes and redshifts of billions of galaxies, across ~1/3 of the sky

[ESA's Euclid space satellite]

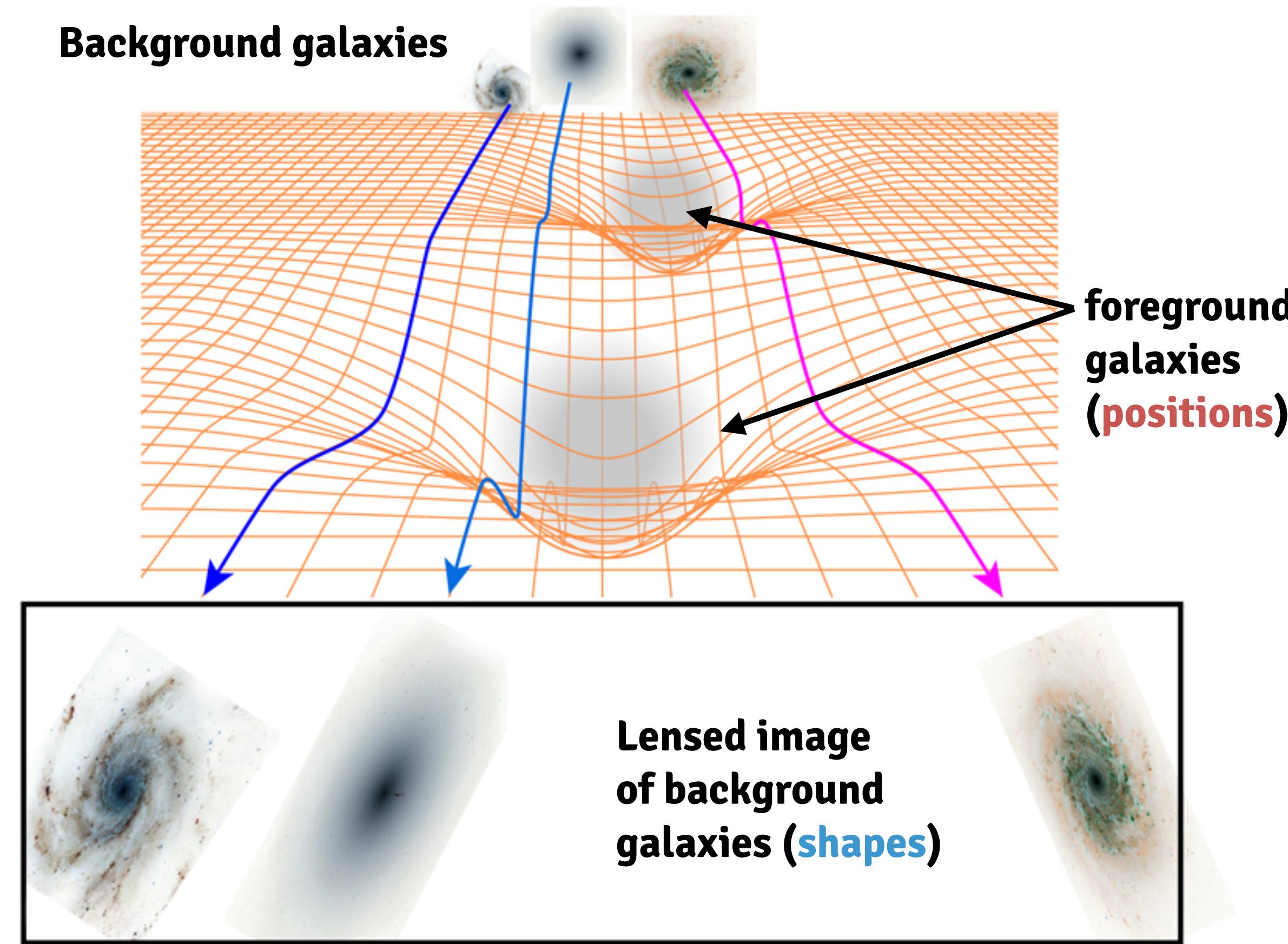


On July 1st 2023, Euclid was launched to L2

For 6 years, Euclid will measure the shapes and redshifts of billions of galaxies, across ~1/3 of the sky

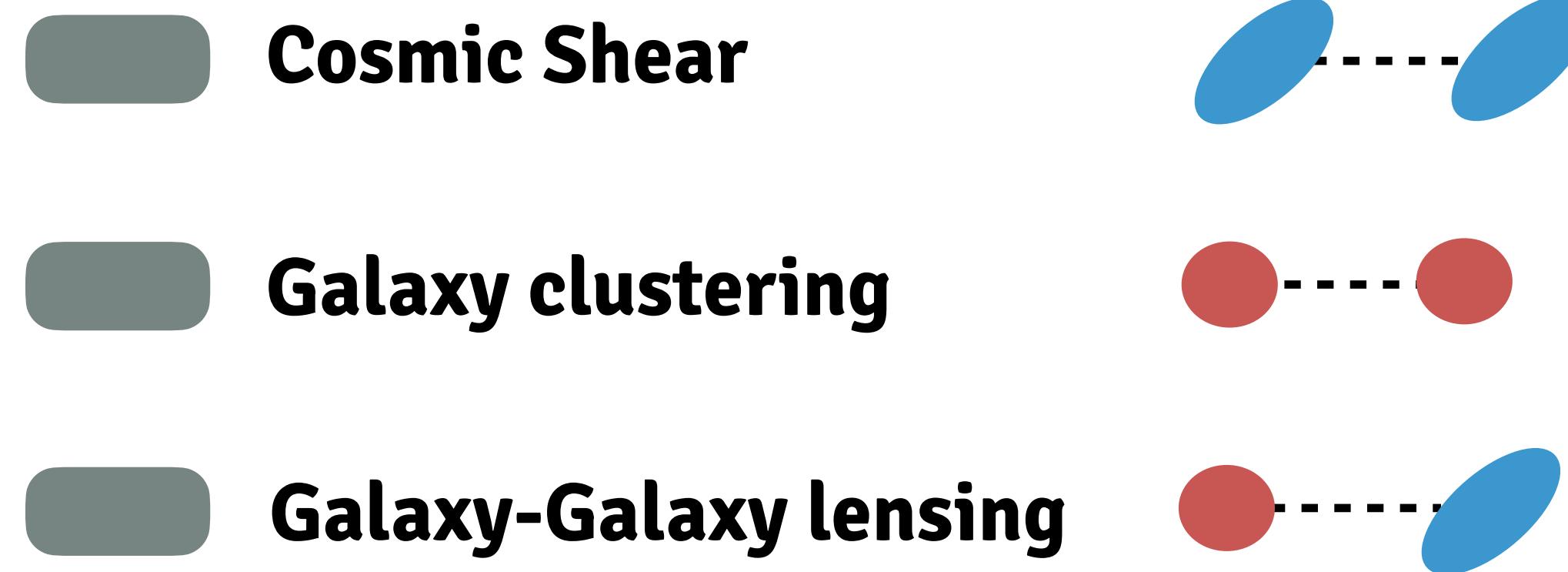
First public data release expected in 2026

Which are the Euclid primary observables?



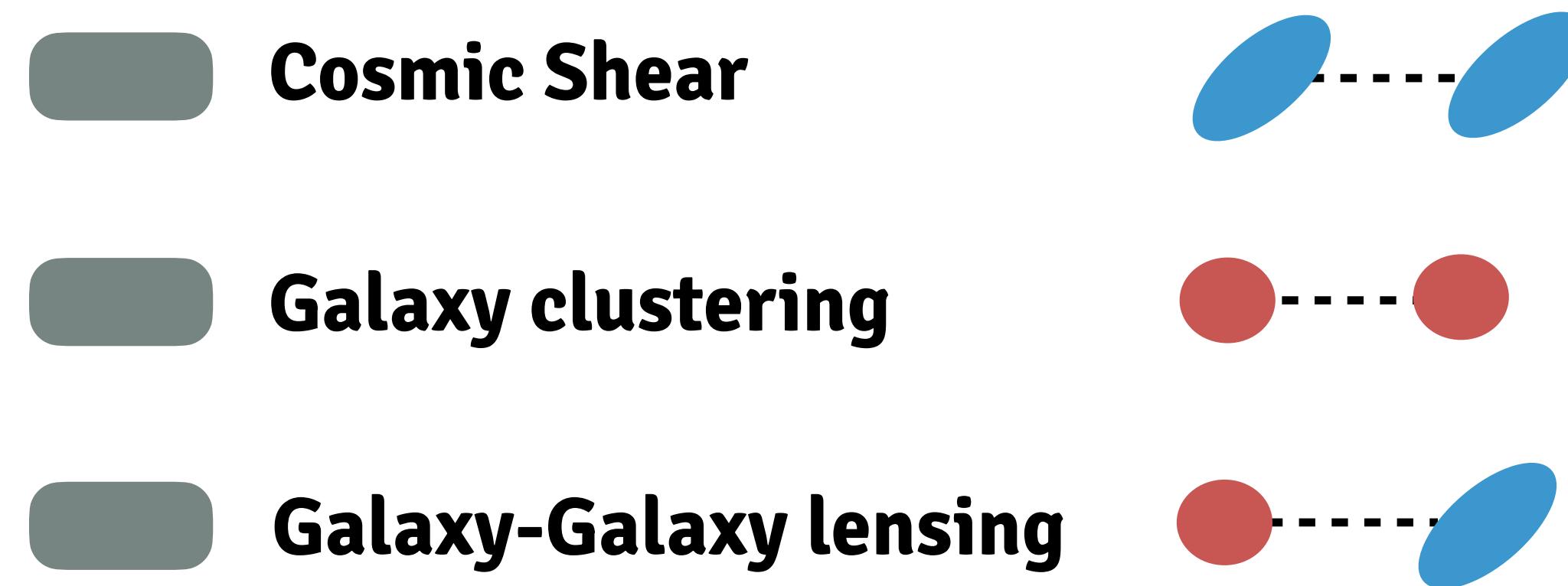
3x2pt photometric probes

Summarise maps of galaxy **positions/shapes** using three 2-point statistics (**3x2pt**) measured at 10 tomographic redshift bins



3x2pt photometric probes

Summarise maps of galaxy **positions/shapes** using three 2-point statistics (**3x2pt**) measured at **10 tomographic redshift bins**



...described by angular **power spectra** $C_{ij}^{XY}(\ell) = \int dz \ W_i^X(z)W_j^Y(z) \ P_m(k_\ell, z)$

Swyft analysis of Euclid 3x2pt

1. Simulator:

We generate **50k realisations** of 3x2pt spectra with gaussian noise

$$\hat{C}_{ij}^{AB}(\ell) = C_{ij}^{AB}(\ell) + n_{ij}^{AB}(\ell)$$

$\mathcal{N}(0, \mathbf{C})$

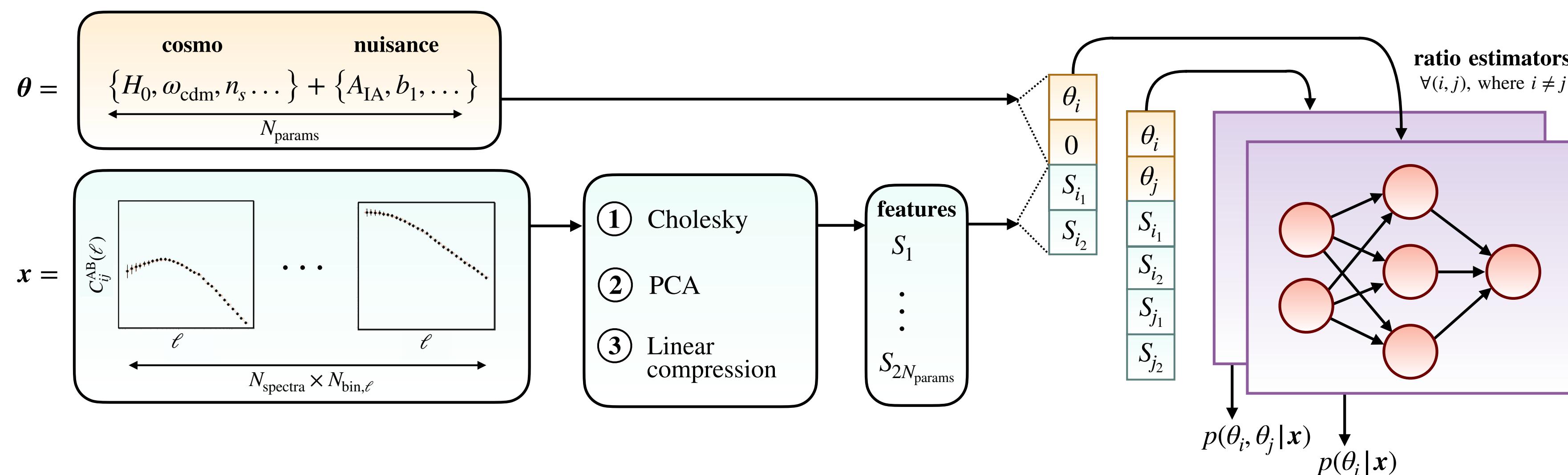
Swyft analysis of Euclid 3x2pt

1. Simulator:

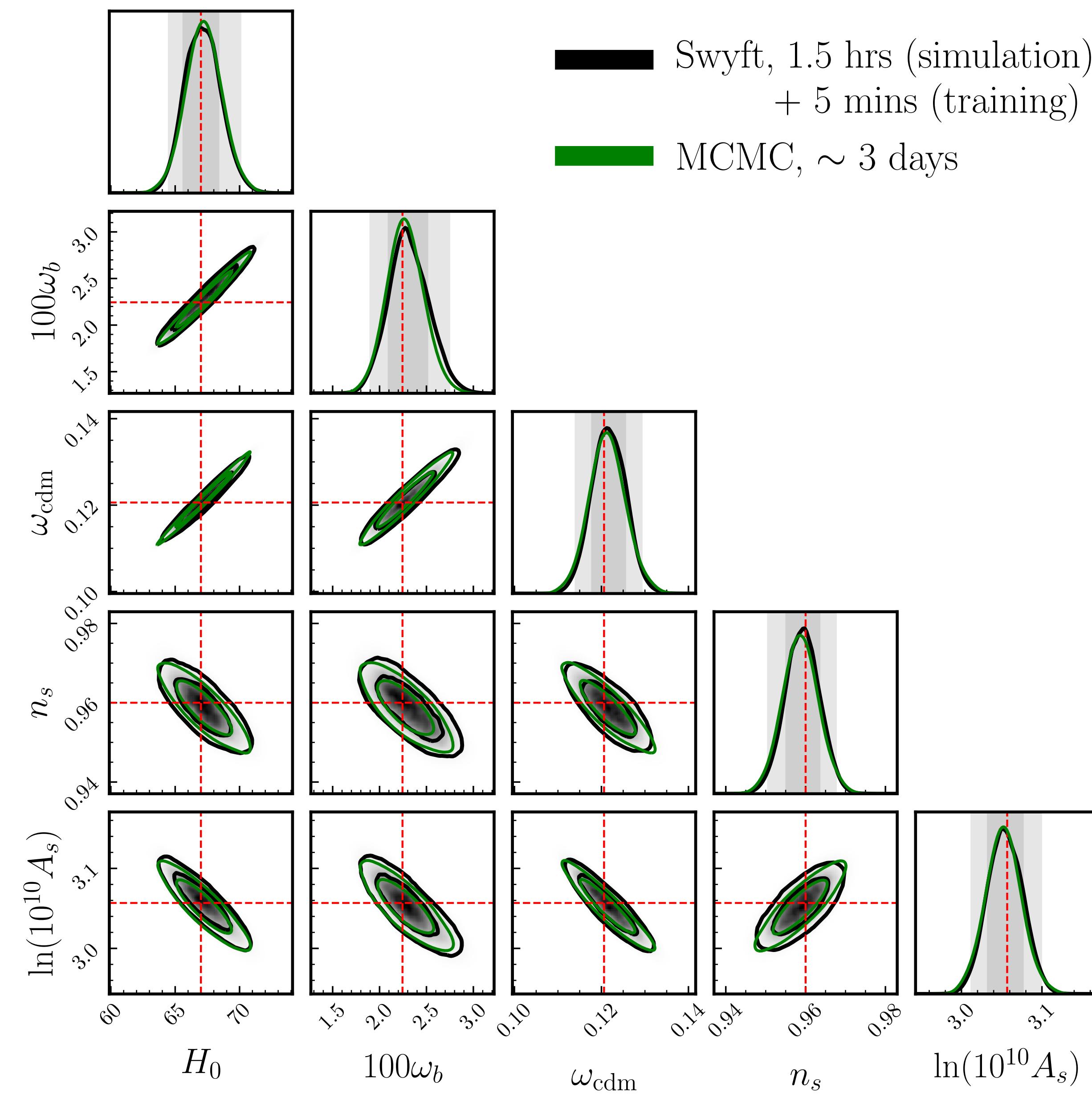
We generate **50k realisations** of 3x2pt spectra with gaussian noise

$$\hat{C}_{ij}^{AB}(\ell) = C_{ij}^{AB}(\ell) + n_{ij}^{AB}(\ell) \sim \mathcal{N}(0, \mathbf{C})$$

2. Network: We pre-compress spectra into features

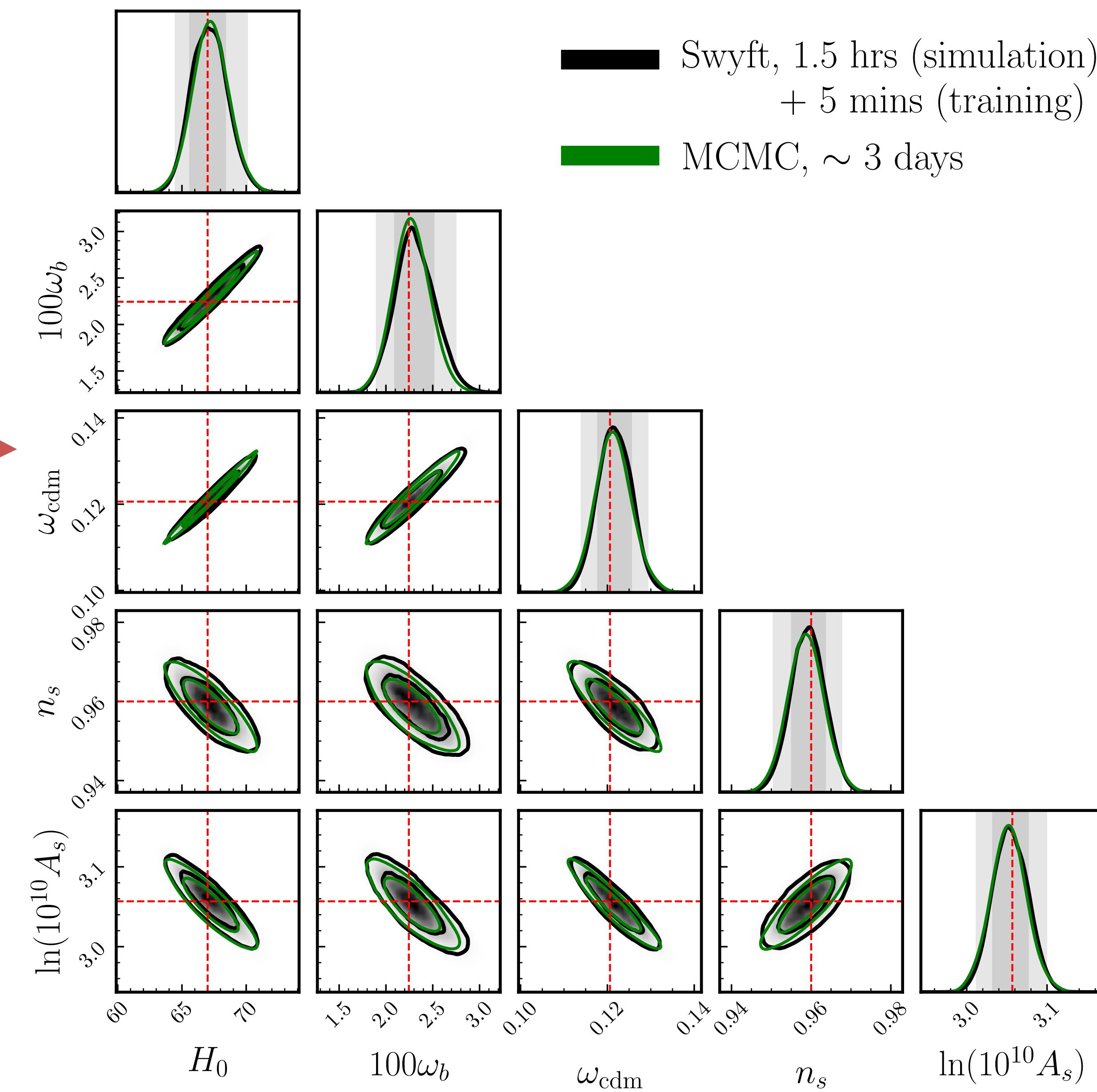


Forecast Λ CDM posteriors



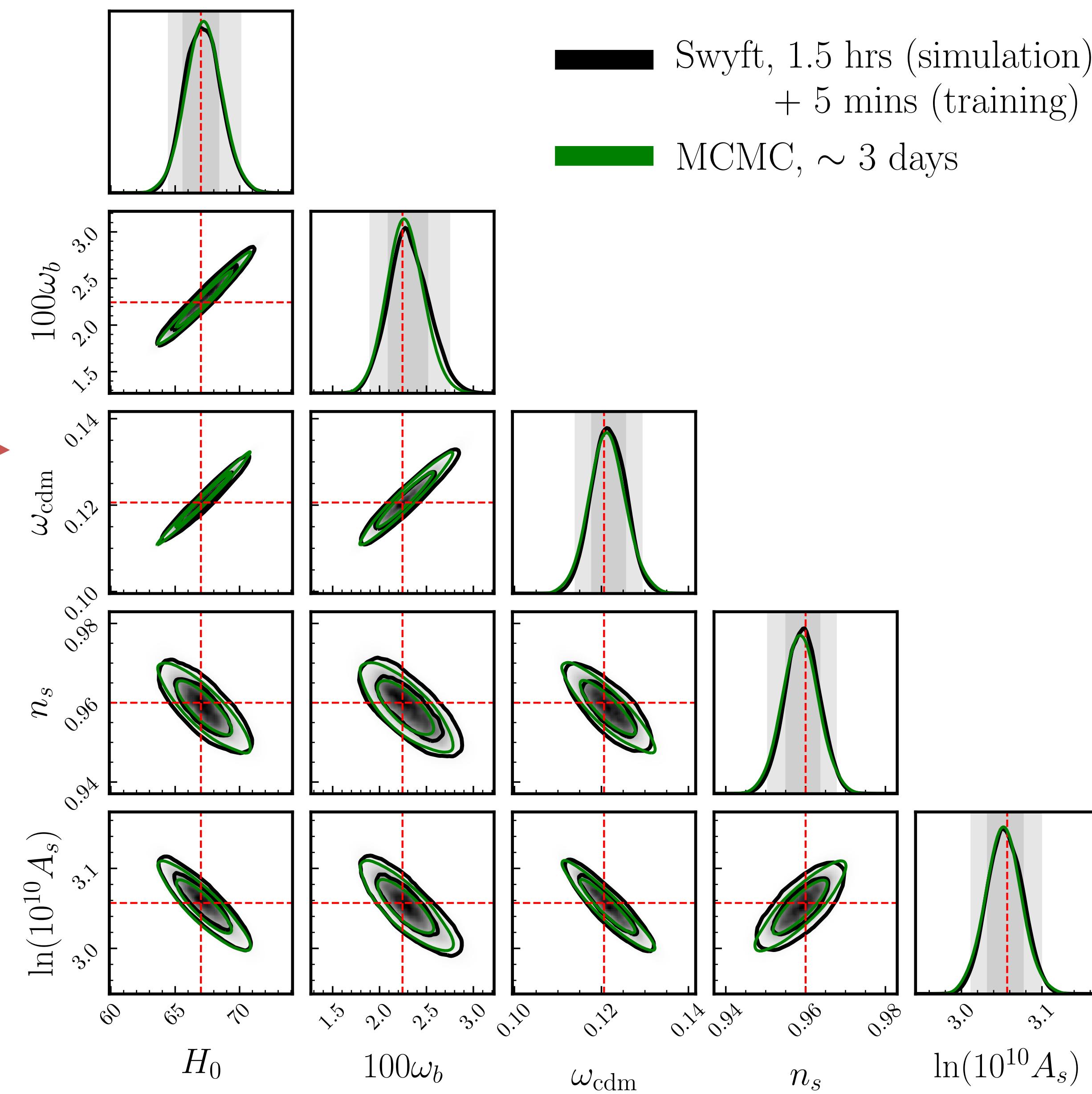
Forecast Λ CDM posteriors

MNRE & MCMC are in excellent agreement!



Forecast Λ CDM posteriors

MNRE & MCMC are in excellent agreement!

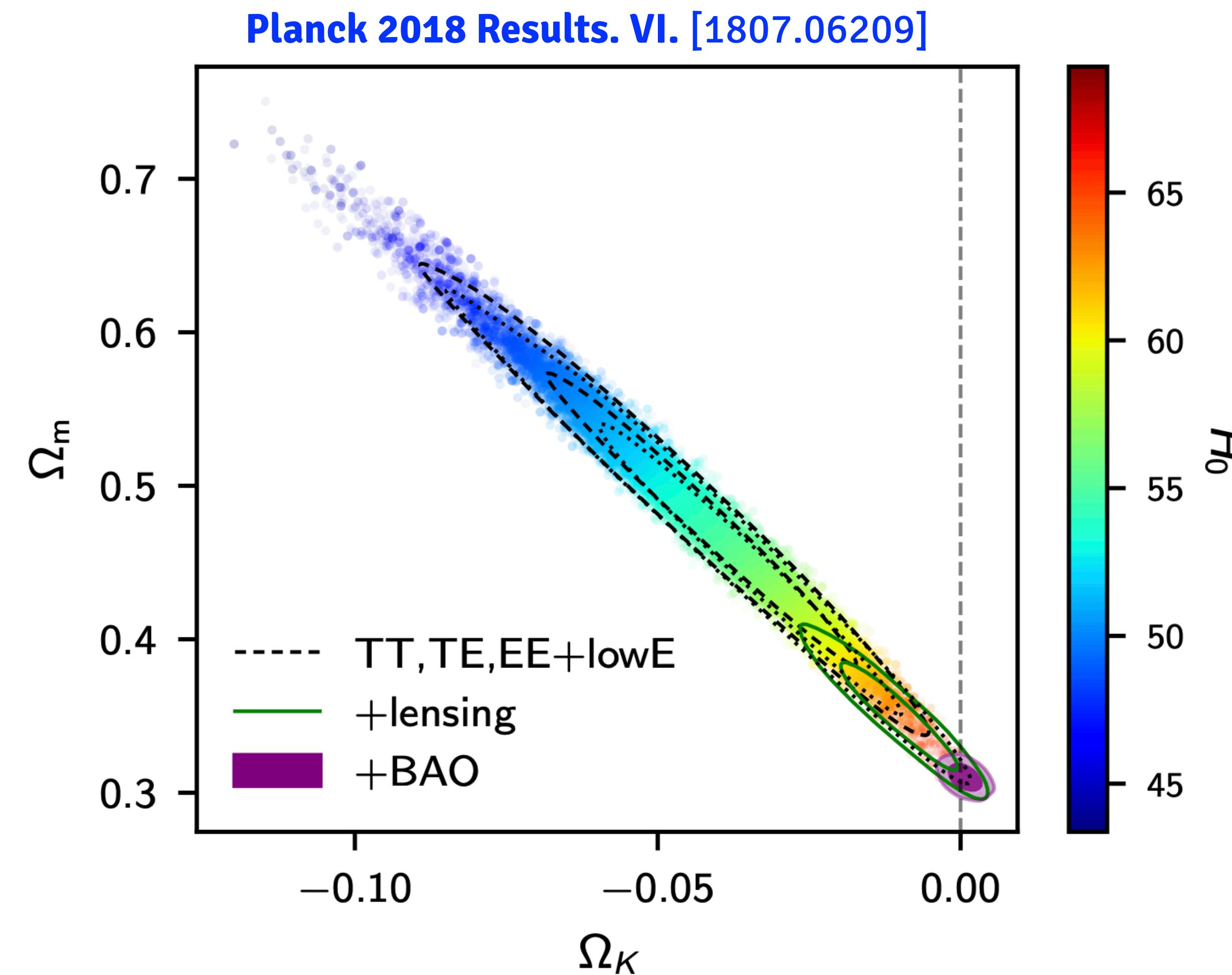


Dramatic reduction
in CPU time!

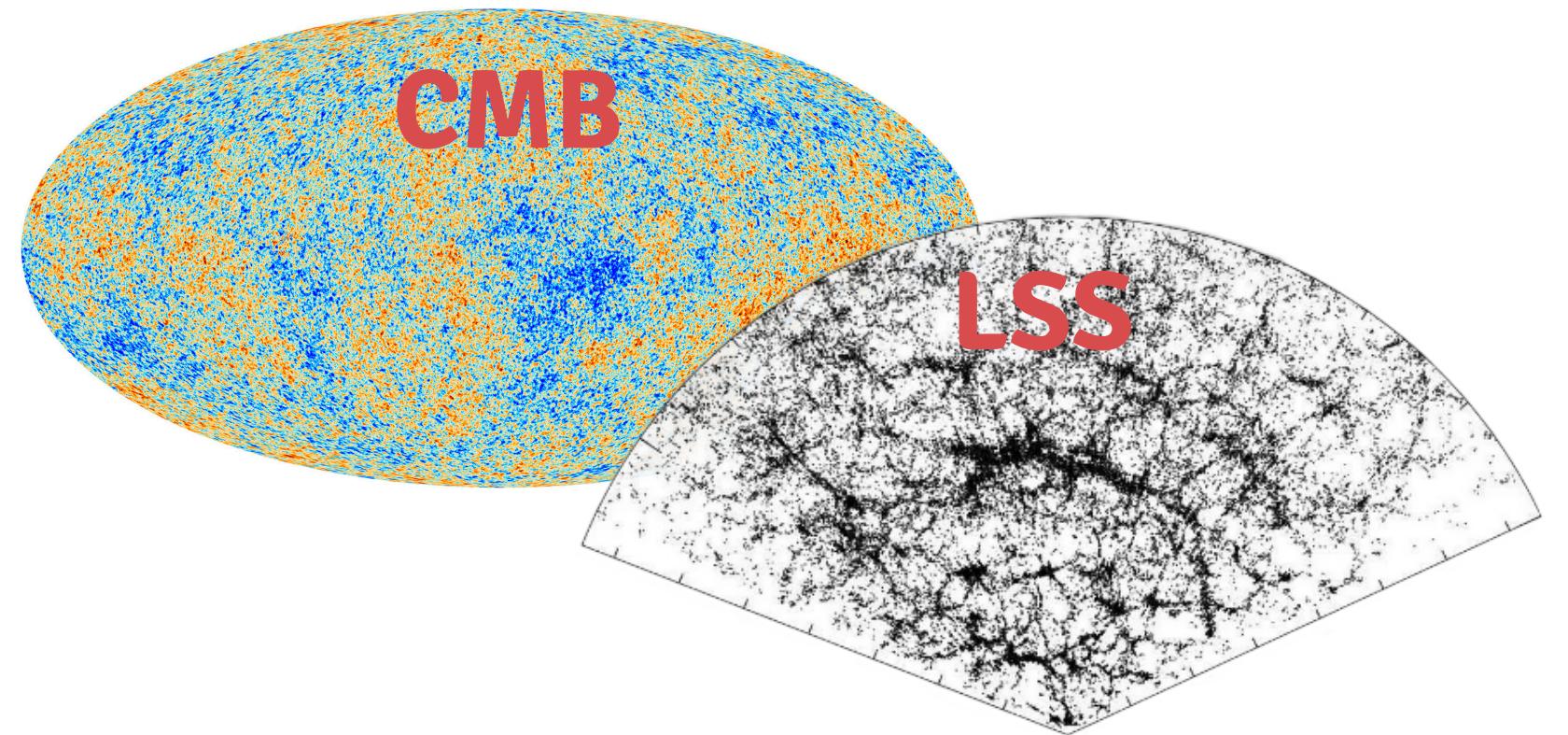
What about combining different cosmological probes?

What about combining different cosmological probes?

Canonical example:

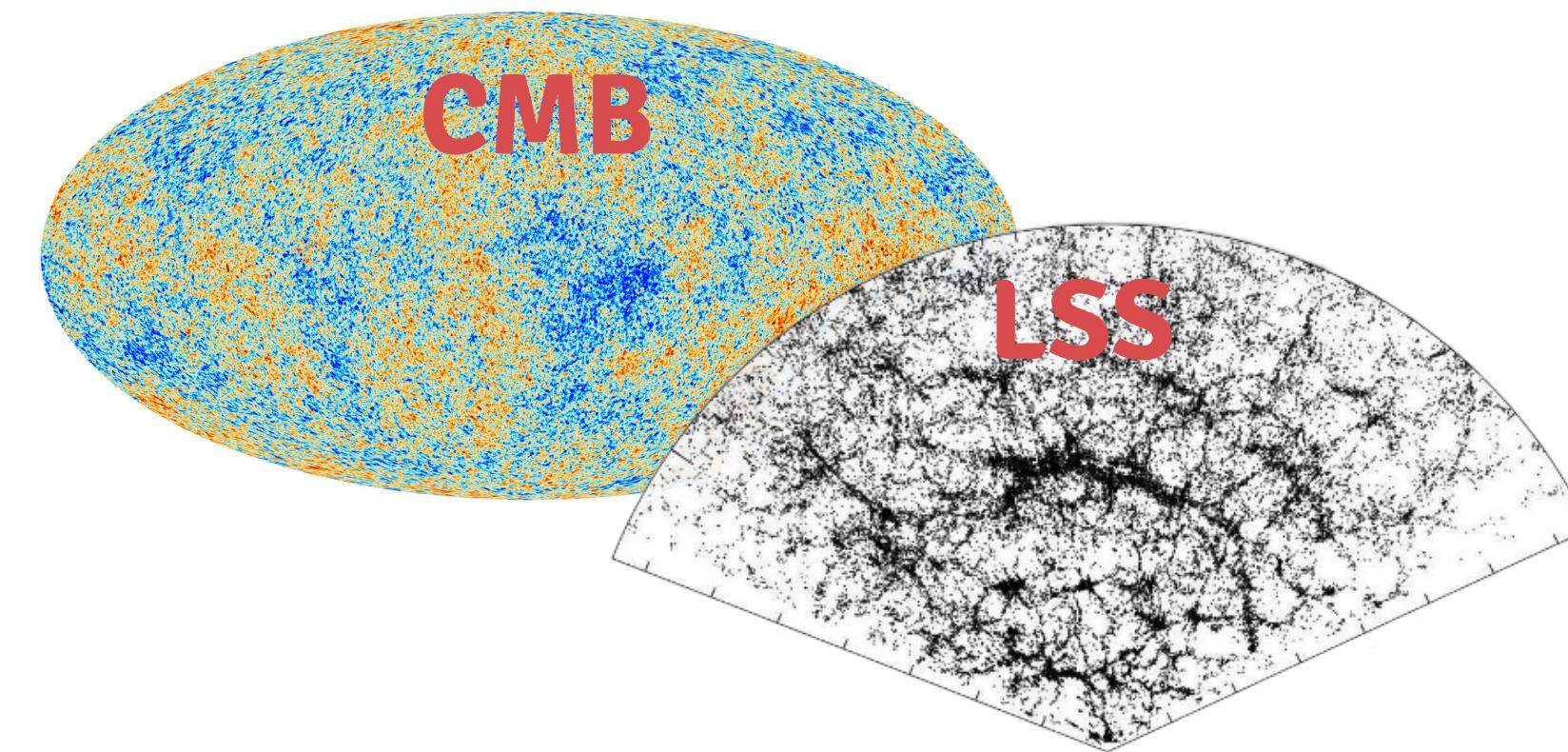


Joint analyses of CMB & LSS



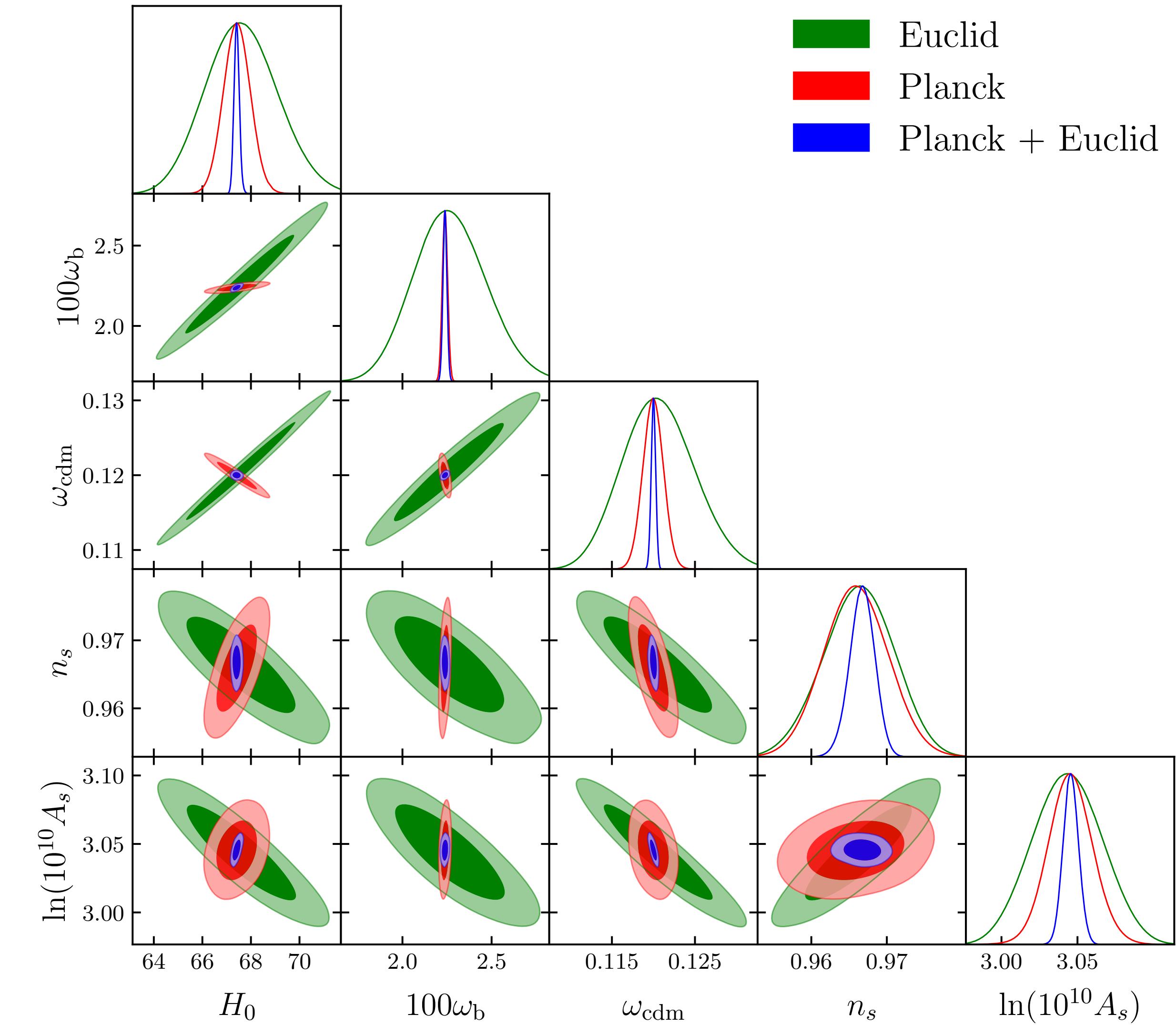
Very complementary
(high- z vs. low- z , linear vs. non-linear)

Joint analyses of CMB & LSS



Very complementary
(high- z vs. low- z , linear vs. non-linear)

Break parameter degeneracies



Can we do CMB+LSS analyses in SBI?

Can we do CMB+LSS analyses in SBI?

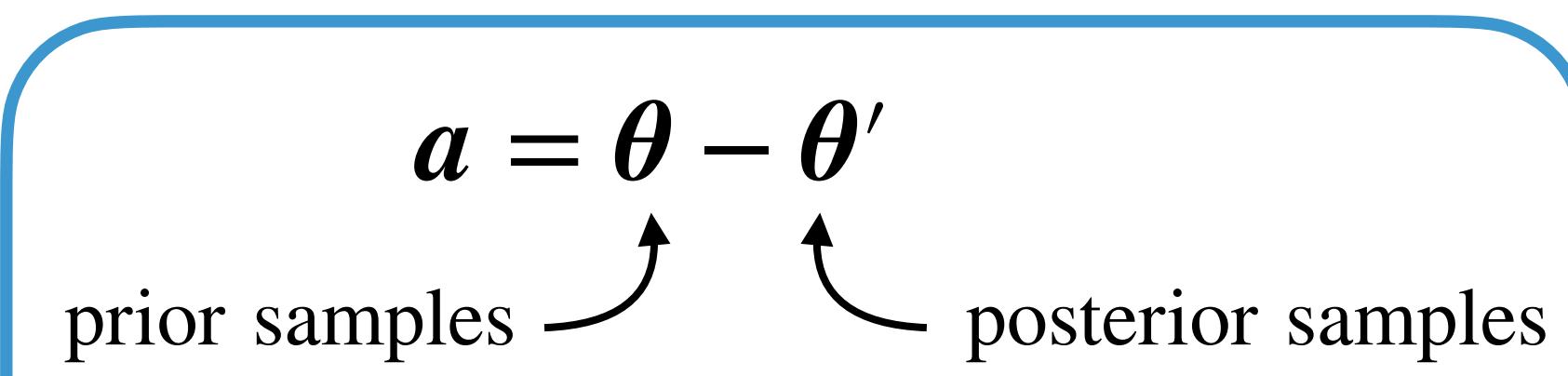
Unfortunately, building a realistic **Planck simulator** seems very challenging

Can we do CMB+LSS analyses in SBI?

Unfortunately, building a realistic Planck simulator seems very challenging

BUT we can easily build an “effective” simulator using posterior samples from a previous MCMC run

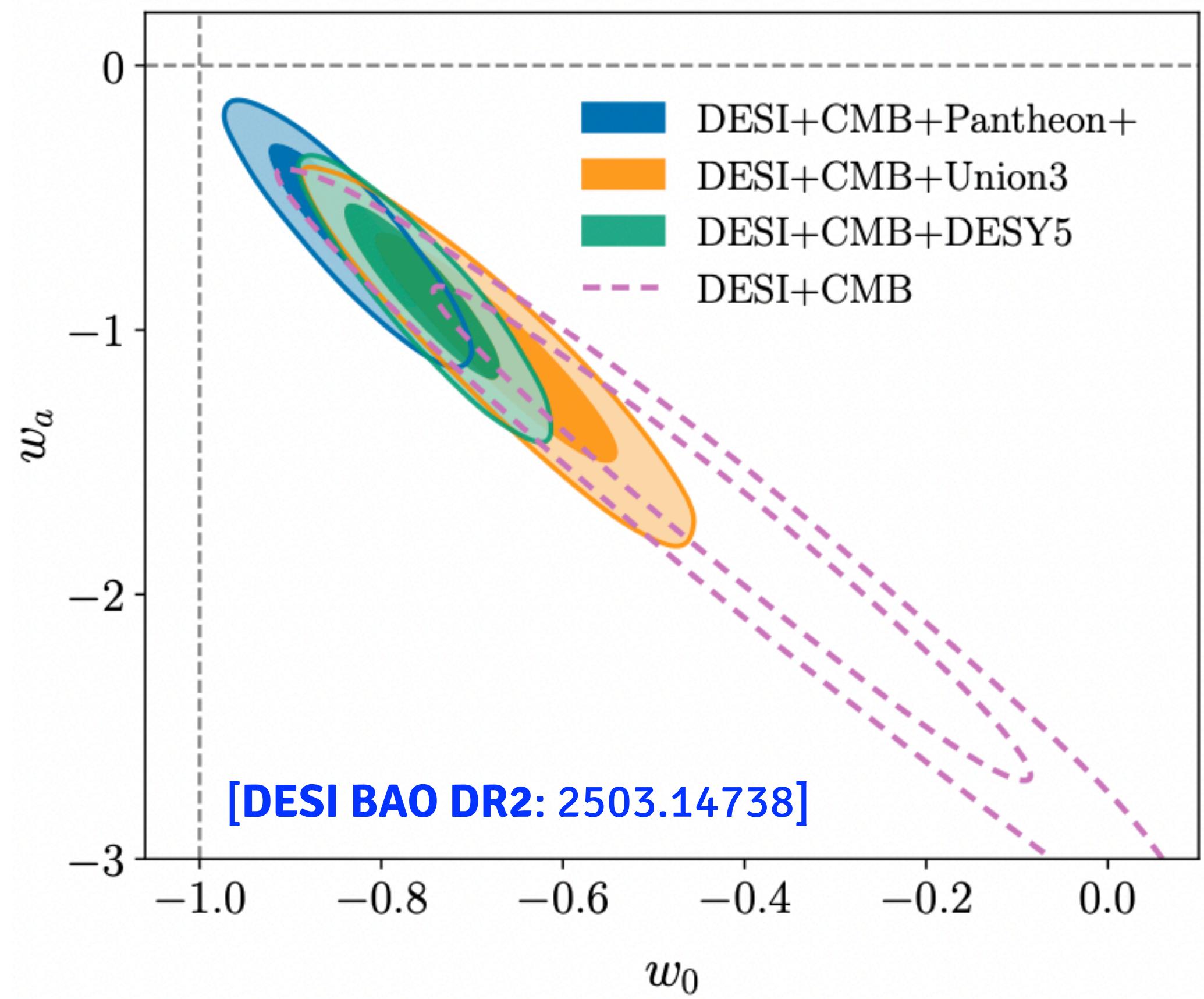
$$a = \theta - \theta'$$

 prior samples \uparrow \uparrow posterior samples

$$f_\phi(\theta | a = 0) \simeq p(\theta | \mathbf{x}_0)$$

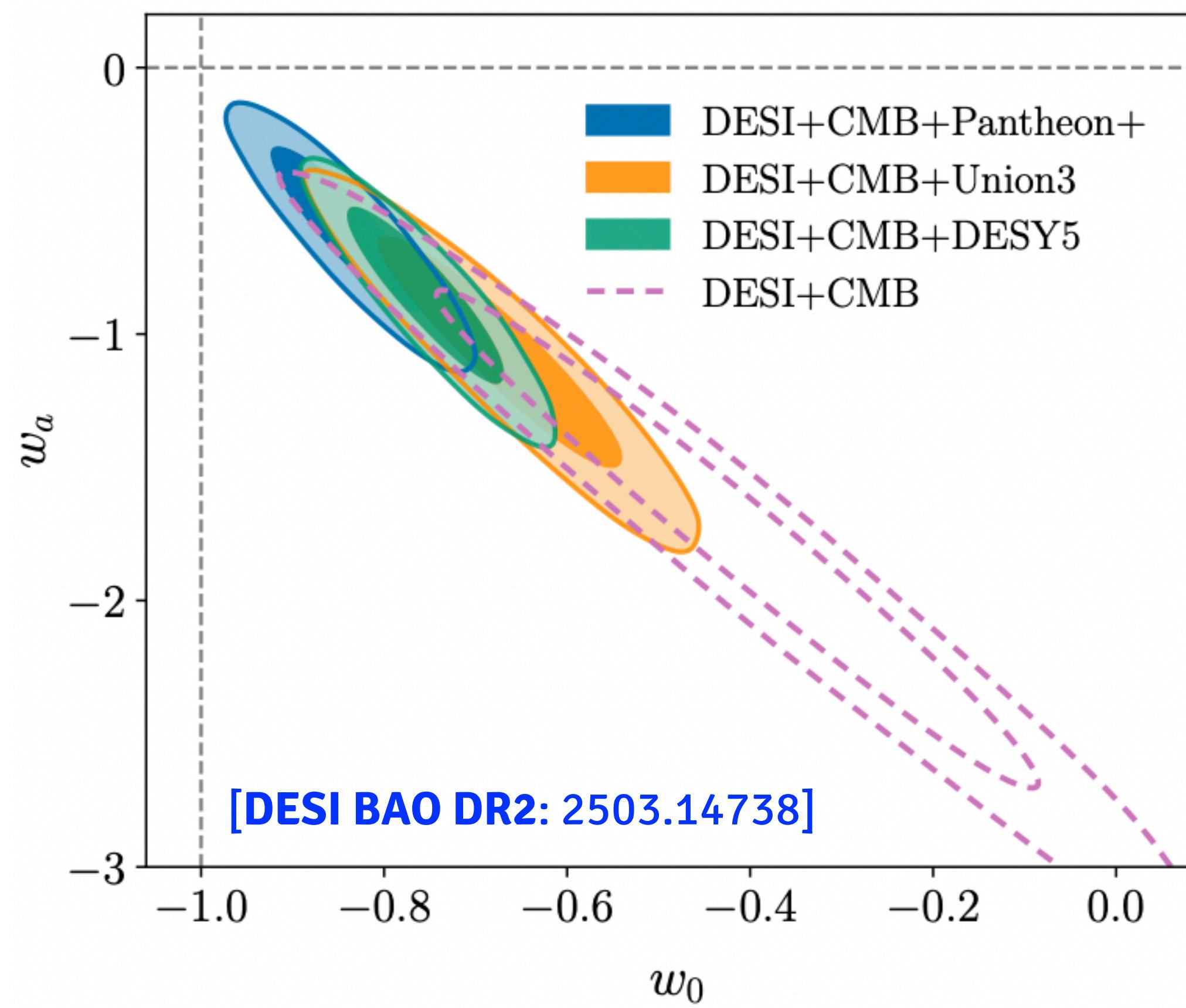
Application to evolving dark energy

$$w_{\text{CPL}}(a) = w_0 + w_a(1 - a)$$



Application to evolving dark energy

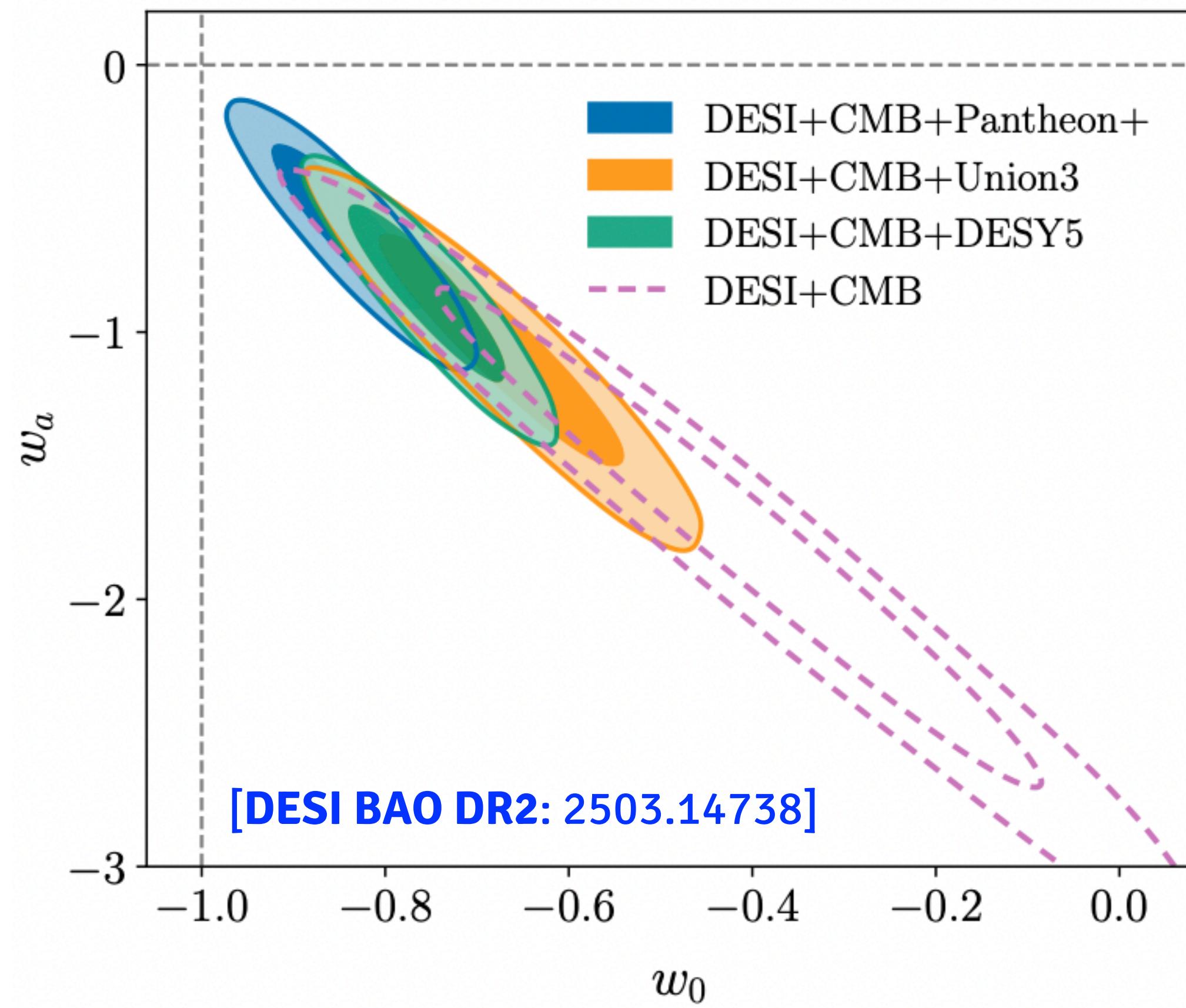
$$w_{\text{CPL}}(a) = w_0 + w_a(1 - a)$$



What can Euclid data (and its combination with current probes) tell us about this?

Application to evolving dark energy

$$w_{\text{CPL}}(a) = w_0 + w_a(1 - a)$$

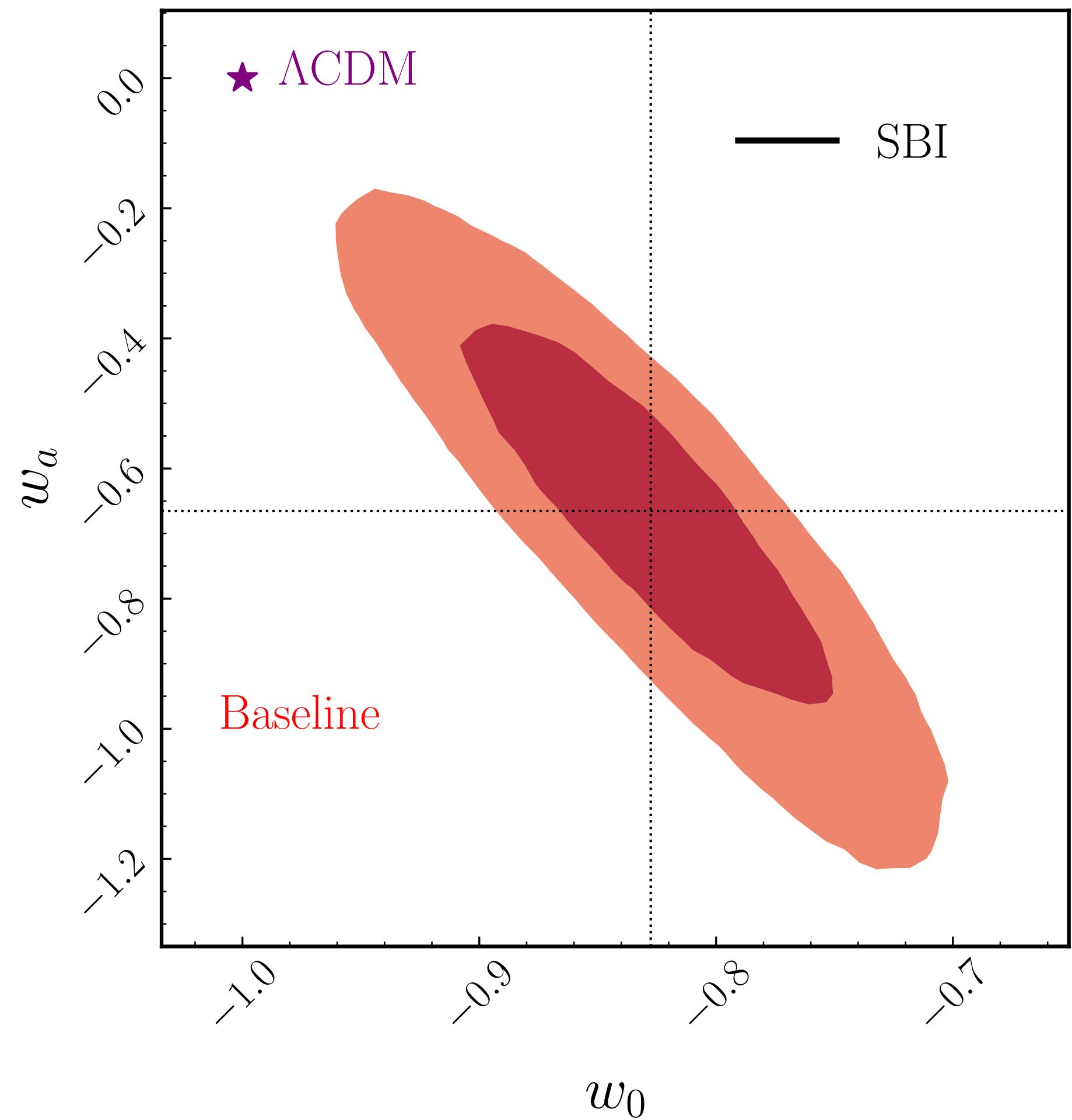


What can Euclid data (and its combination with current probes) tell us about this?

Perform forecast assuming the bestfit $w_0 w_a$ CDM model hinted by DESI + CMB + Pantheon+

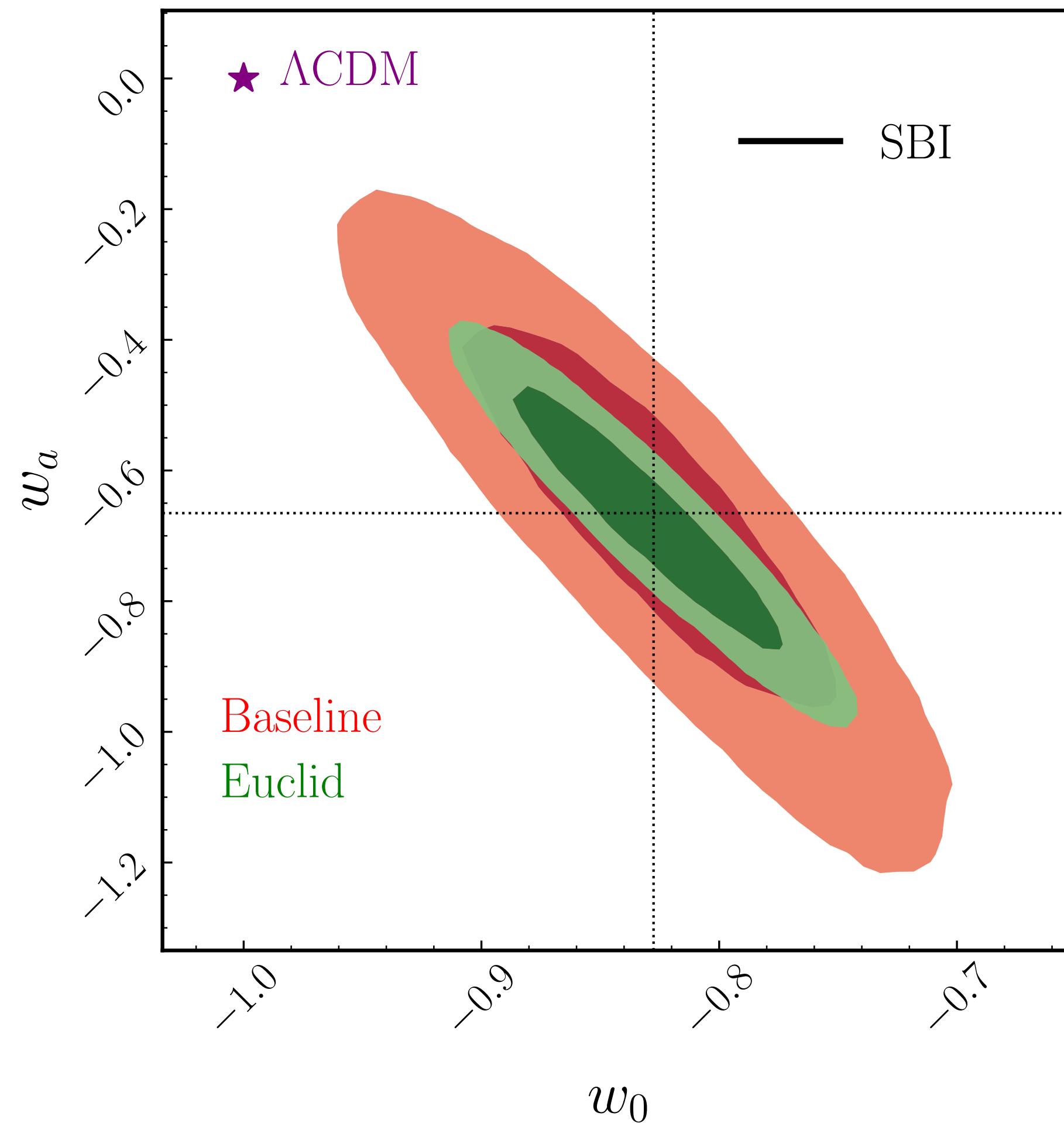
Forecast w_0w_a CDM posteriors

Baseline = DESI + Planck + Pantheon+



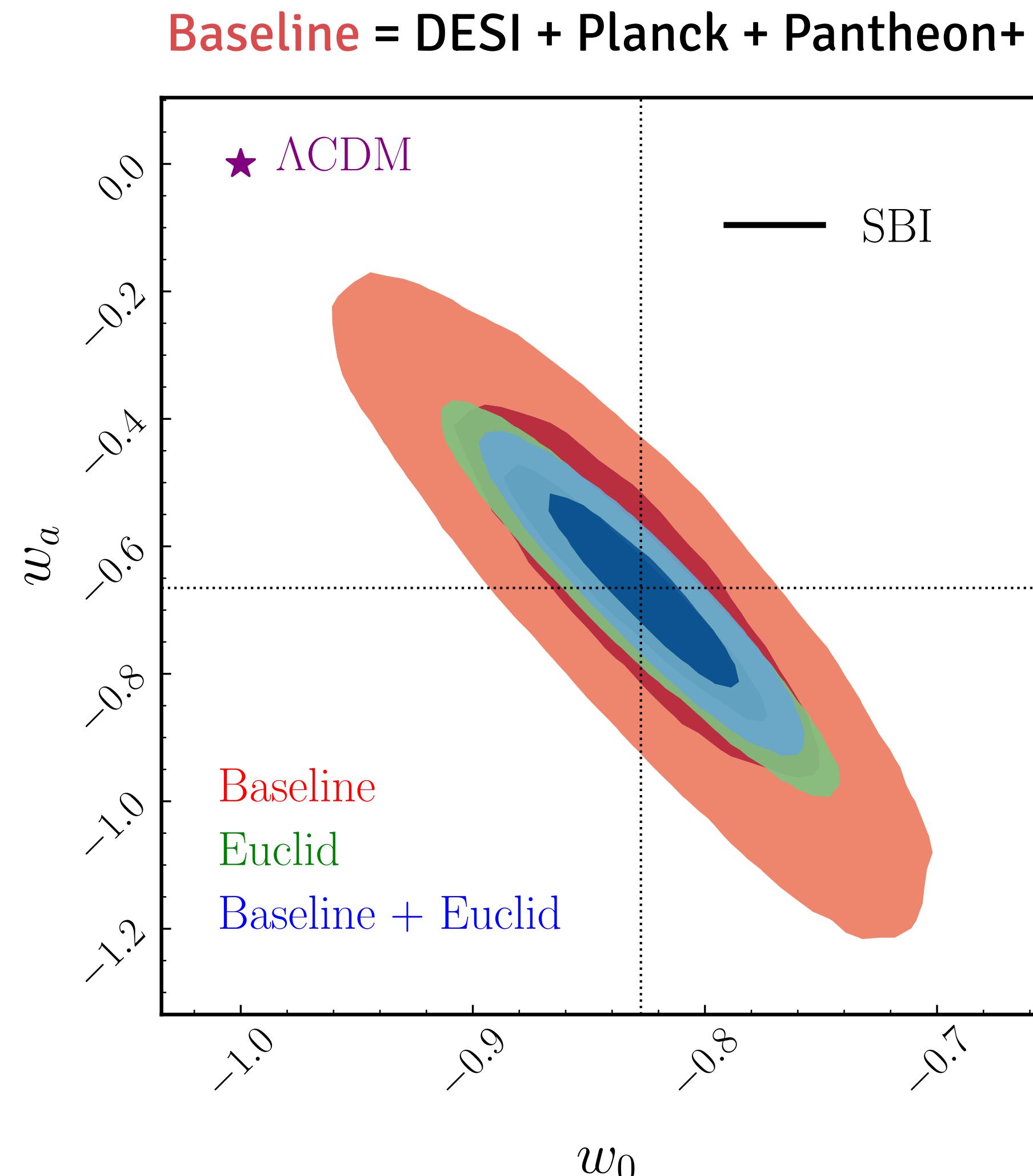
Forecast w_0w_a CDM posteriors

Baseline = DESI + Planck + Pantheon+



Euclid alone could detect the fiducial w_0w_a CDM model at the $\sim 5\sigma$ level

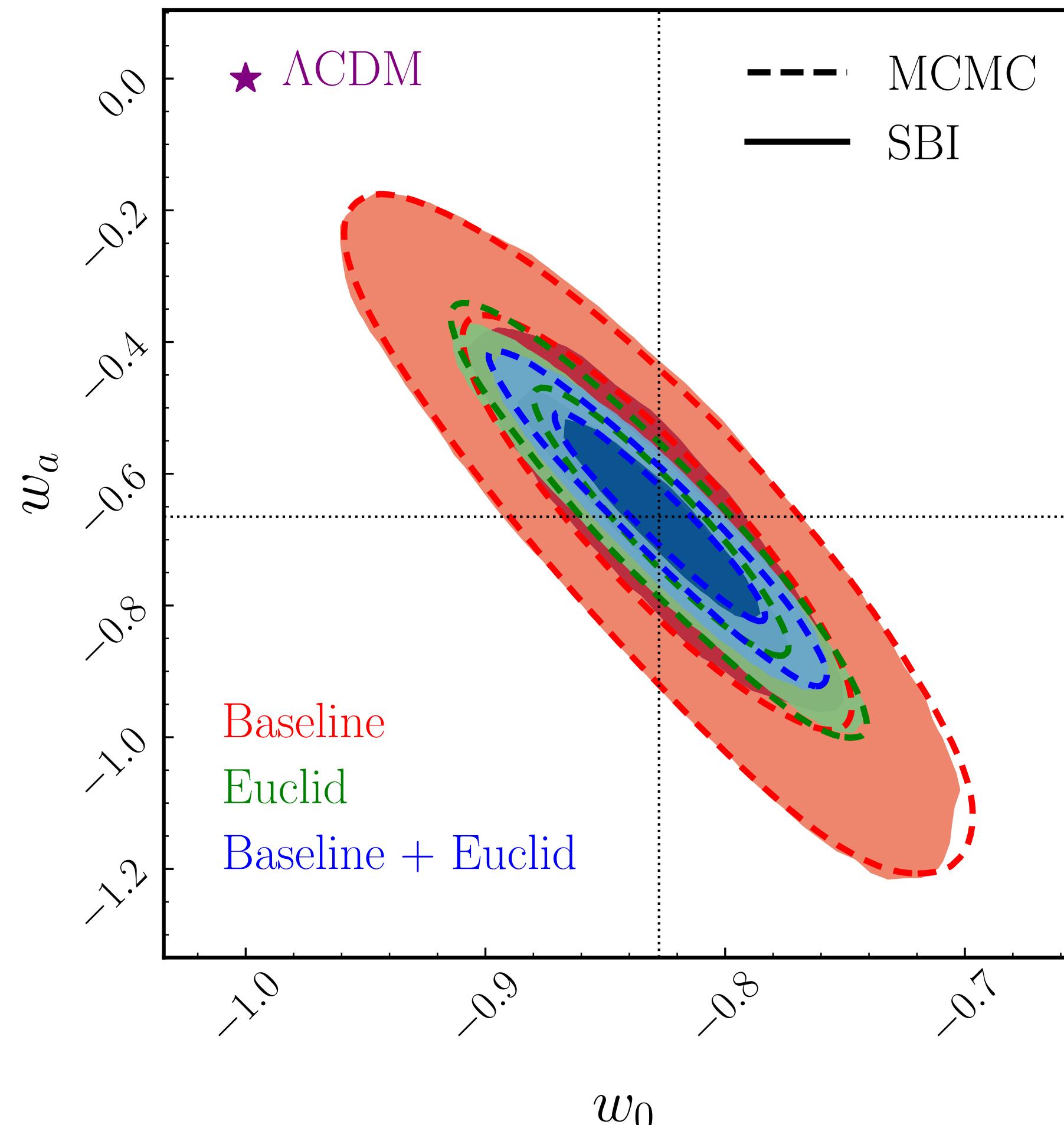
Forecast w_0w_a CDM posteriors



- **Euclid alone** could detect the fiducial w_0w_a CDM model at the $\sim 5\sigma$ level
- The **combination with Planck+DESI** data would rise the detection to $\sim 7\sigma$

Forecast w_0w_a CDM posteriors

Baseline = DESI + Planck + Pantheon+



SBI is in good agreement with MCMC, while requiring only $\sim 3\%$ of the number of model evaluations used by MCMC

Conclusions

- Modern **deep learning** techniques will be key to learn as much as we can about the dark sector and neutrinos from **future** data
- Emulators** achieve **ultra-fast** model evaluations → applied to **decaying neutrino** models, these can relax current mass bounds up to $\sum m_\nu < 0.24 \text{ eV}$
- SBI** methods provide a **simulator-efficient** and scalable alternative to MCMC → applied to **Euclid+Planck**, these datasets could **detect evolving dark energy** at $\sim 7\sigma$

Conclusions

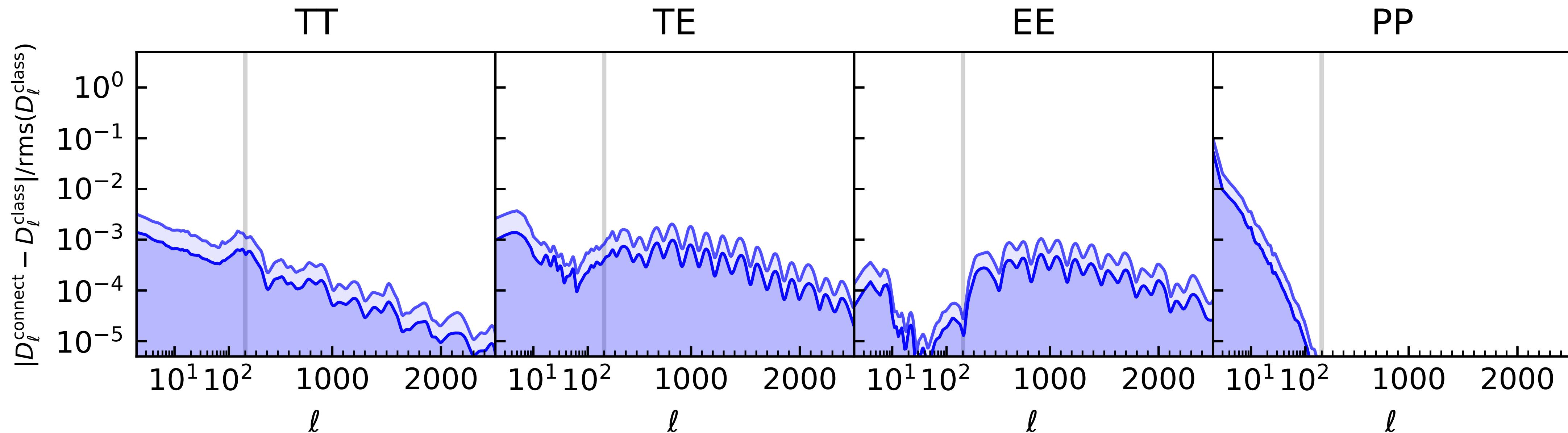
- Modern **deep learning** techniques will be key to learn as much as we can about the dark sector and neutrinos from **future** data
- Emulators** achieve **ultra-fast** model evaluations → applied to **decaying neutrino** models, these can relax current mass bounds up to $\sum m_\nu < 0.24 \text{ eV}$
- SBI** methods provide a **simulator-efficient** and scalable alternative to MCMC → applied to **Euclid+Planck**, these datasets could **detect evolving dark energy** at $\sim 7\sigma$

THANK YOU!

g.francoabellan@uva.nl

BACK-UP

Errors in emulated CMB spectra for neutrino decays



The 1σ and 2σ percentile errors in the CMB spectra (from the test set) are almost always below 1%

Strategy: train a neural network $d_\phi(\mathbf{x}, \theta) \in [0,1]$ as a binary classifier, so that

$$d_\phi(\mathbf{x}, \theta) \simeq 1 \quad \text{if} \quad (\mathbf{x}, \theta) \sim p(\mathbf{x}, \theta) = p(\mathbf{x} \mid \theta)p(\theta)$$

$$d_\phi(\mathbf{x}, \theta) \simeq 0 \quad \text{if} \quad (\mathbf{x}, \theta) \sim p(\mathbf{x})p(\theta)$$

Note: Φ denotes all the network parameters

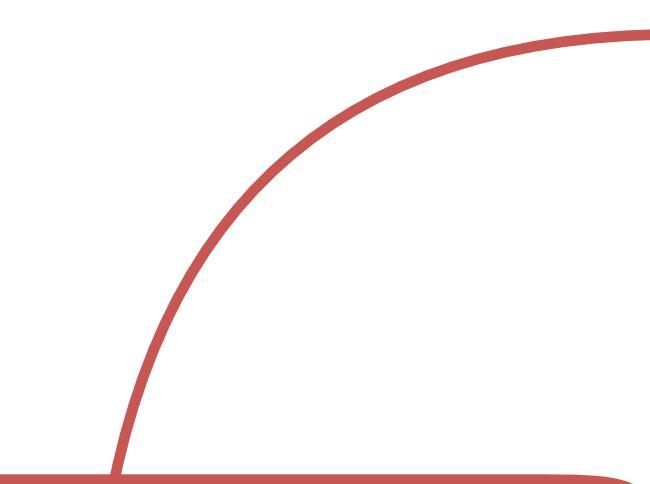
We have to **minimise a loss function** w.r.t. the network params. Φ

$$L[d_\phi(\mathbf{x}, \boldsymbol{\theta})] = - \int d\mathbf{x} d\boldsymbol{\theta} \left[p(\mathbf{x}, \boldsymbol{\theta}) \ln(d_\phi(\mathbf{x}, \boldsymbol{\theta})) + p(\mathbf{x}) p(\boldsymbol{\theta}) \ln(1 - d_\phi(\mathbf{x}, \boldsymbol{\theta})) \right]$$

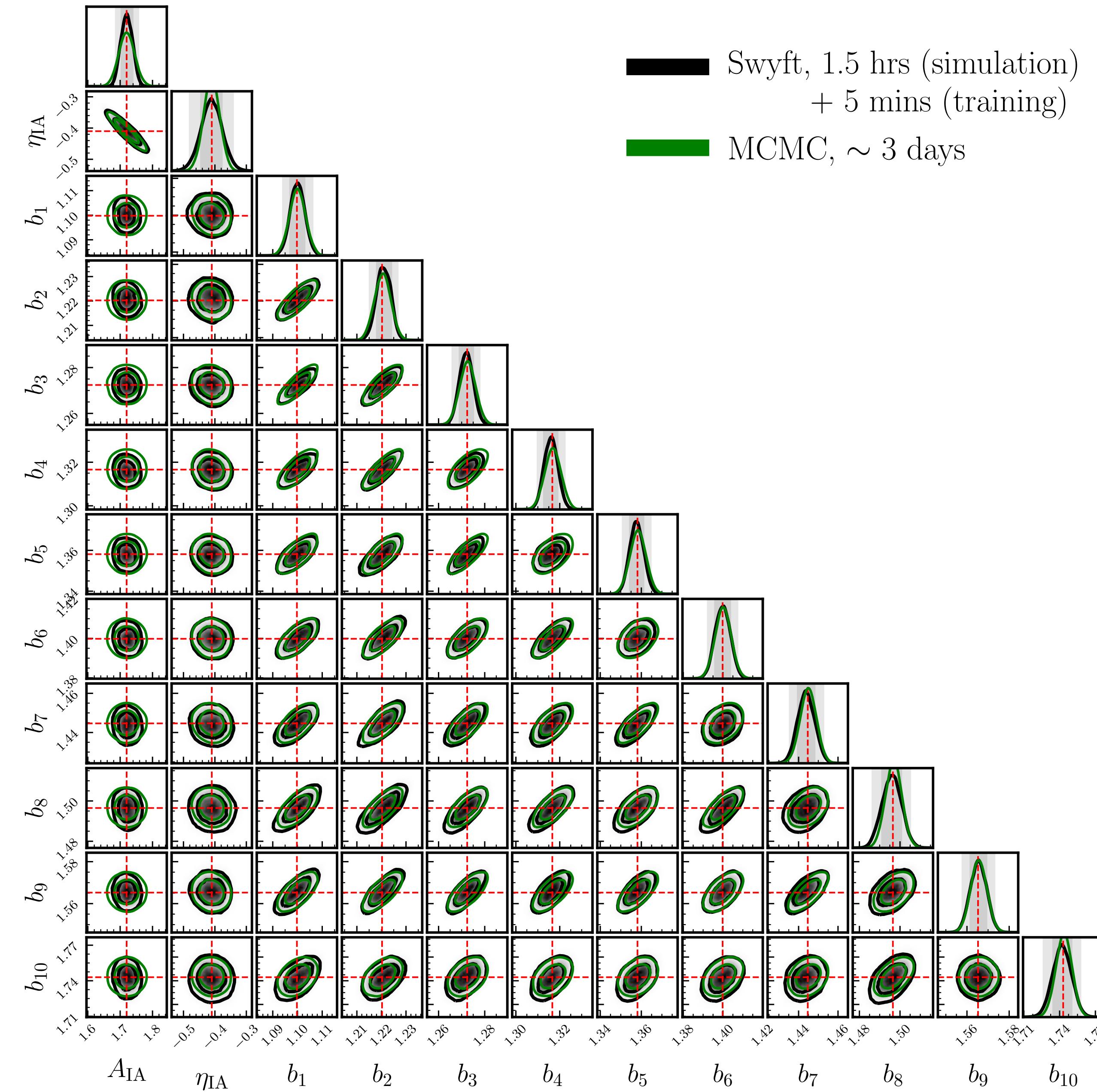
which yields

$$d_\phi(\mathbf{x}, \boldsymbol{\theta}) \simeq \frac{p(\mathbf{x}, \boldsymbol{\theta})}{p(\mathbf{x}, \boldsymbol{\theta}) + p(\mathbf{x}) p(\boldsymbol{\theta})} = \frac{r(\mathbf{x}; \boldsymbol{\theta})}{r(\mathbf{x}; \boldsymbol{\theta}) + 1}$$

Posteriors for 3x2pt nuisance parameters



MNRE & MCMC are again
in good agreement

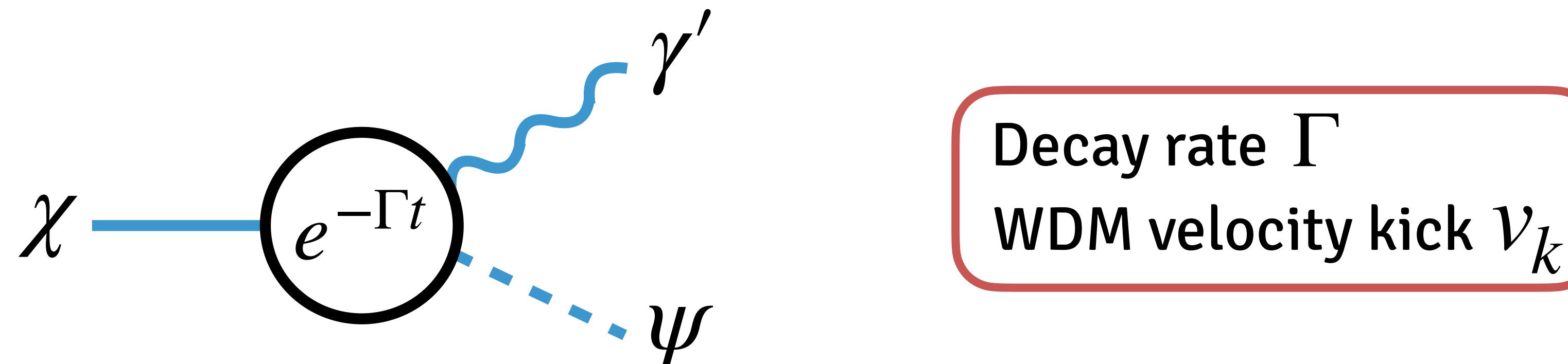


Does MNRE perform well with **highly non-Gaussian** posteriors?

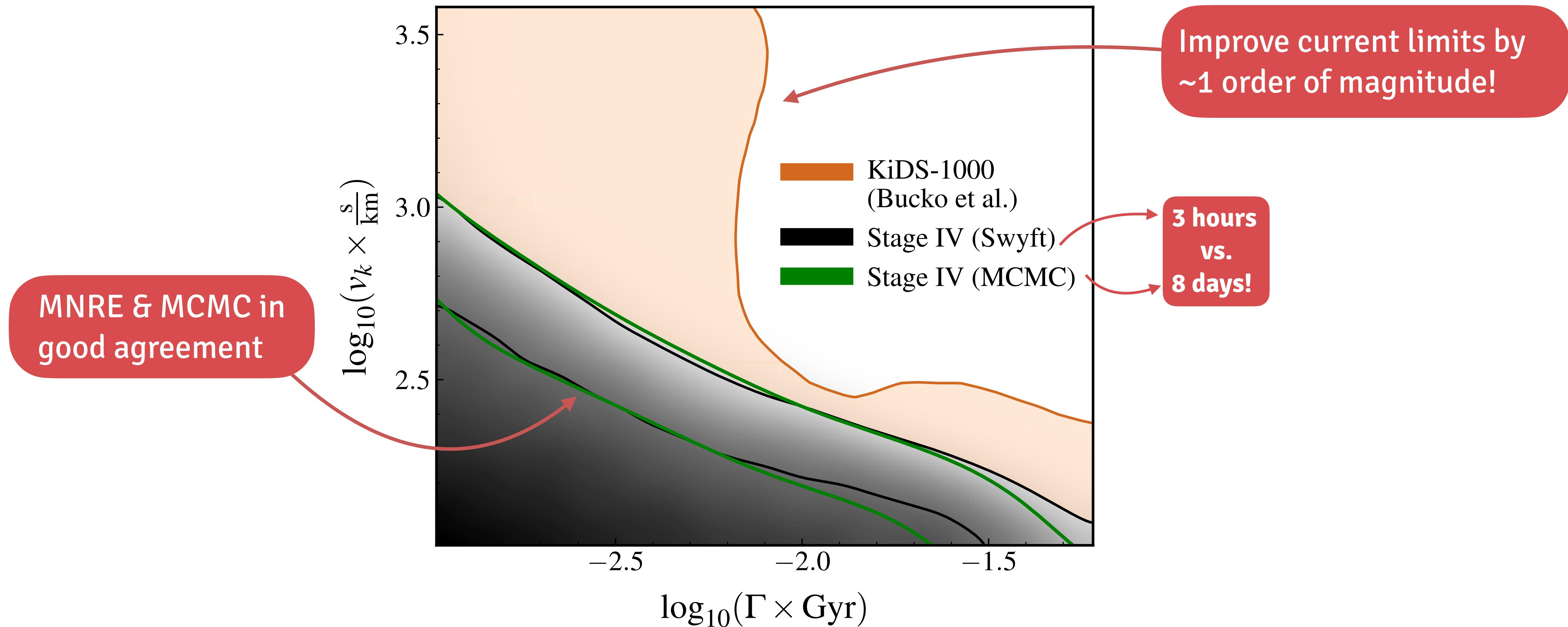
As an example, we test a model of **CDM decaying to DR + WDM**
(proposed to explain the S_8 tension)

[Abellán et al. 2102.12498]

[Bucko et al. 2307.03222]



Forecast constraints on decaying DM

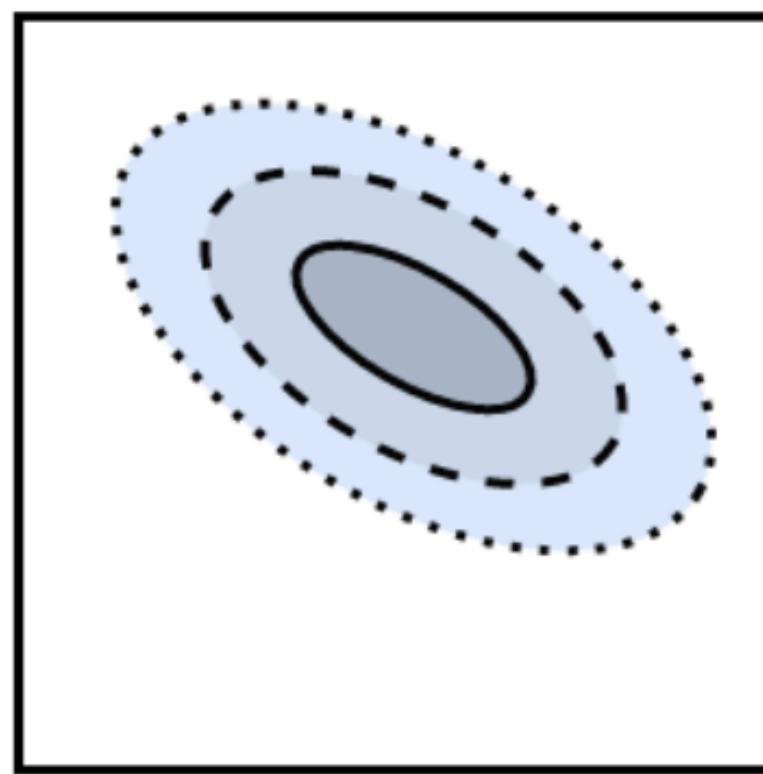


But can we trust our results?

...even if NNs are often seen as "black boxes", it is possible to perform **statistical consistency tests** which are **impossible with MCMC**

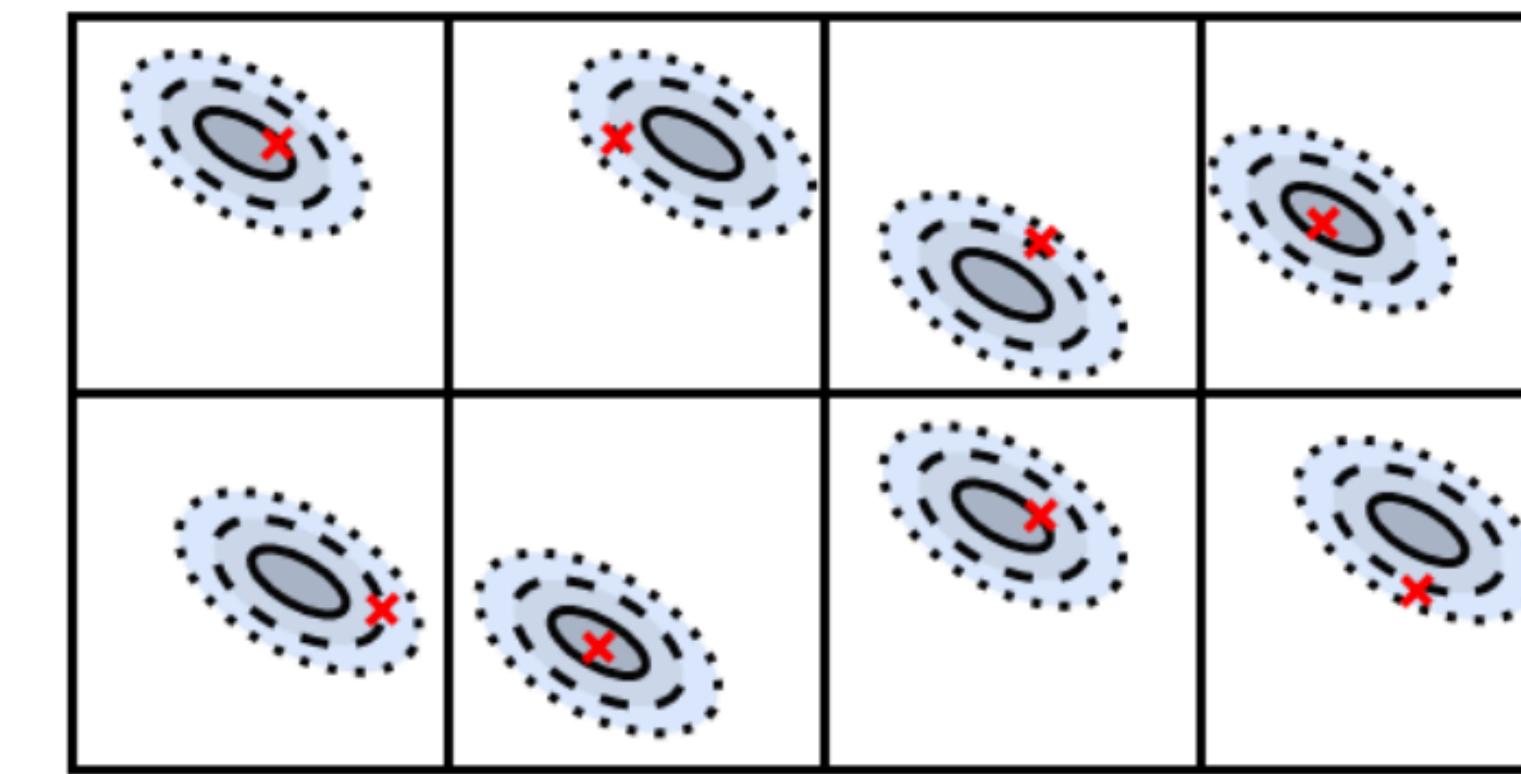
Trained networks can estimate effortlessly
the posteriors for all simulated observations

MCMC



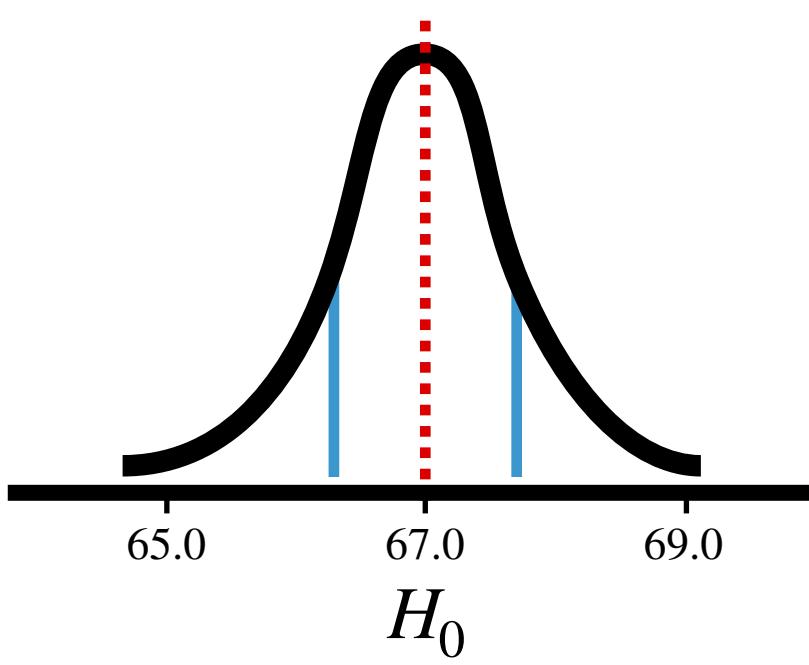
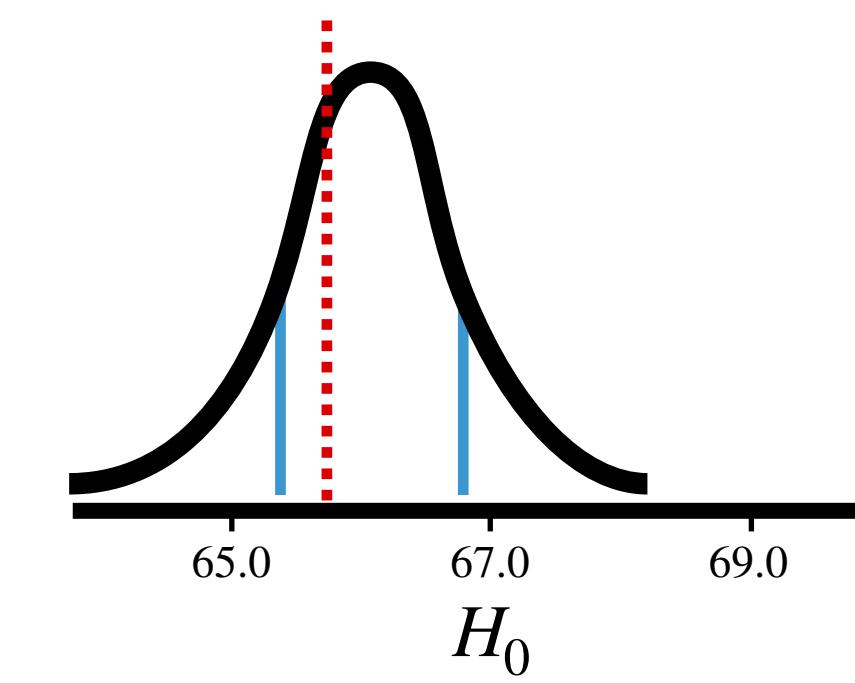
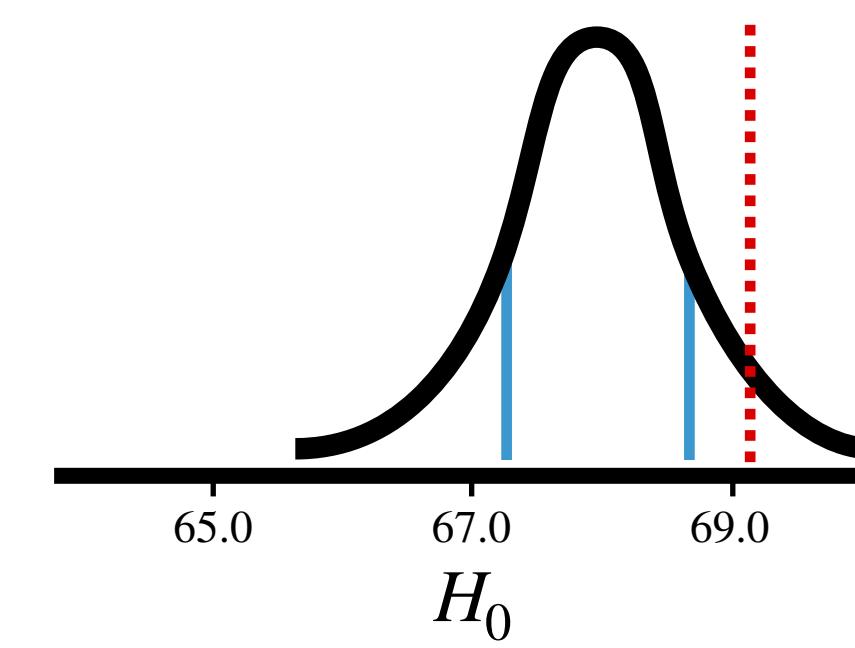
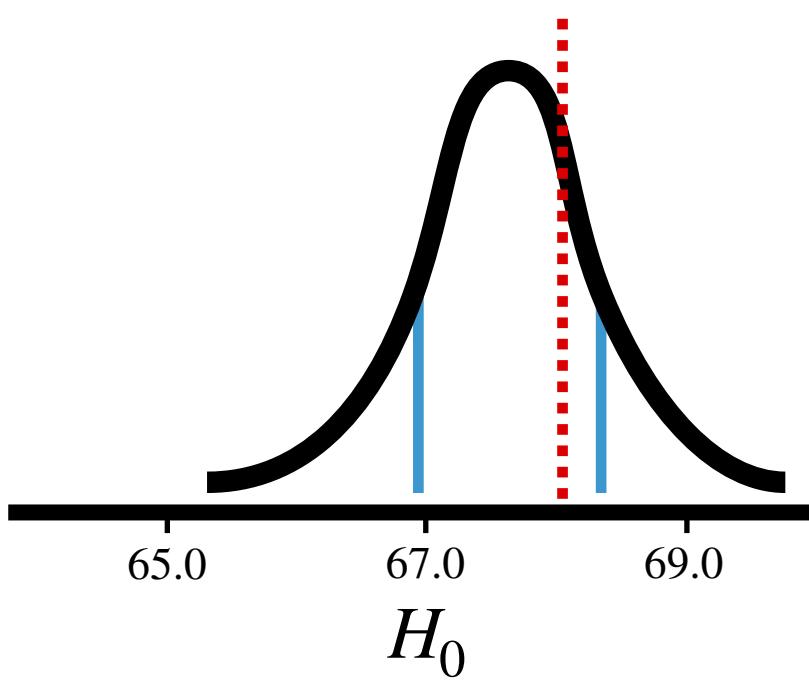
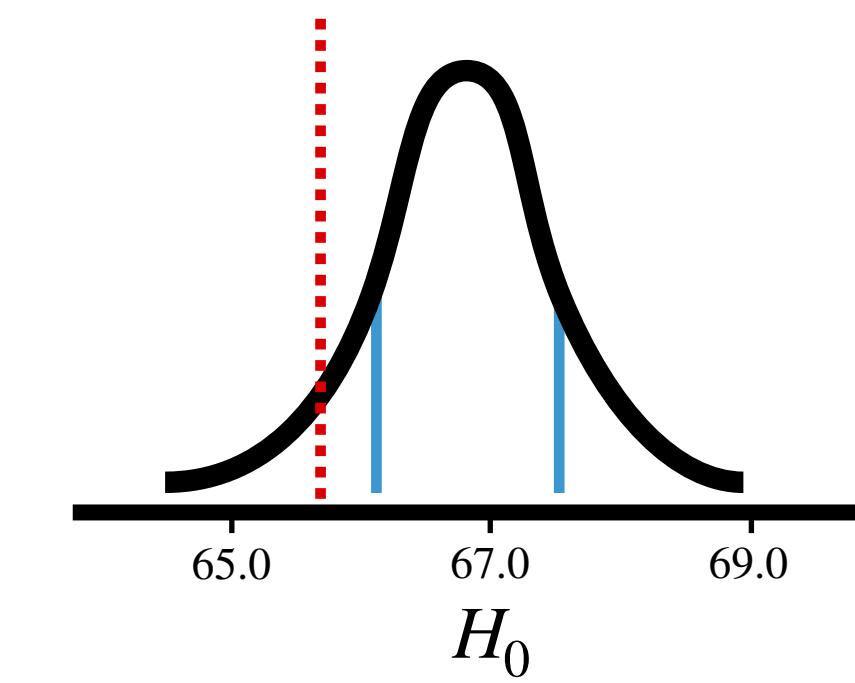
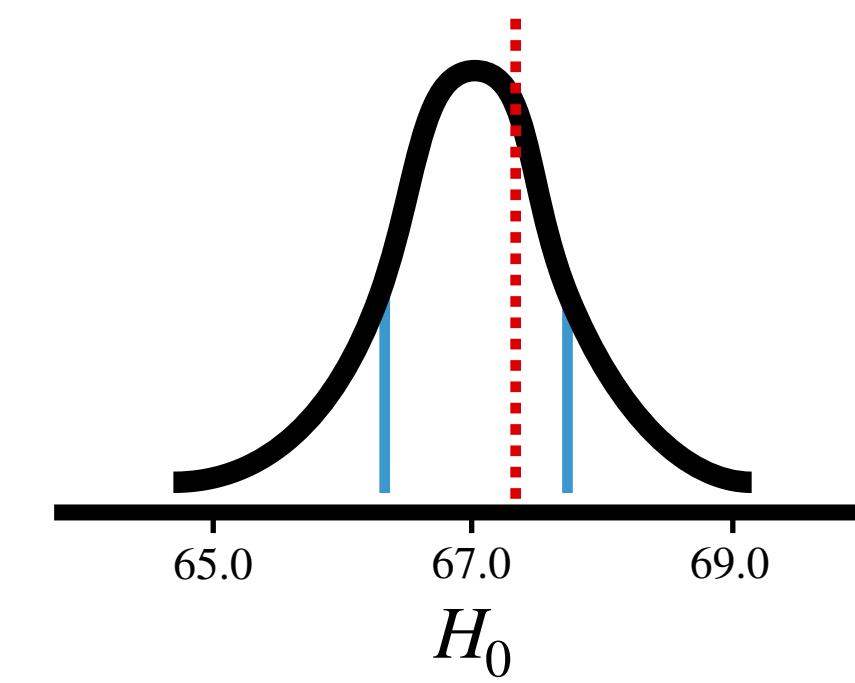
$$p(\theta|x_o)$$

MNRE with swyft

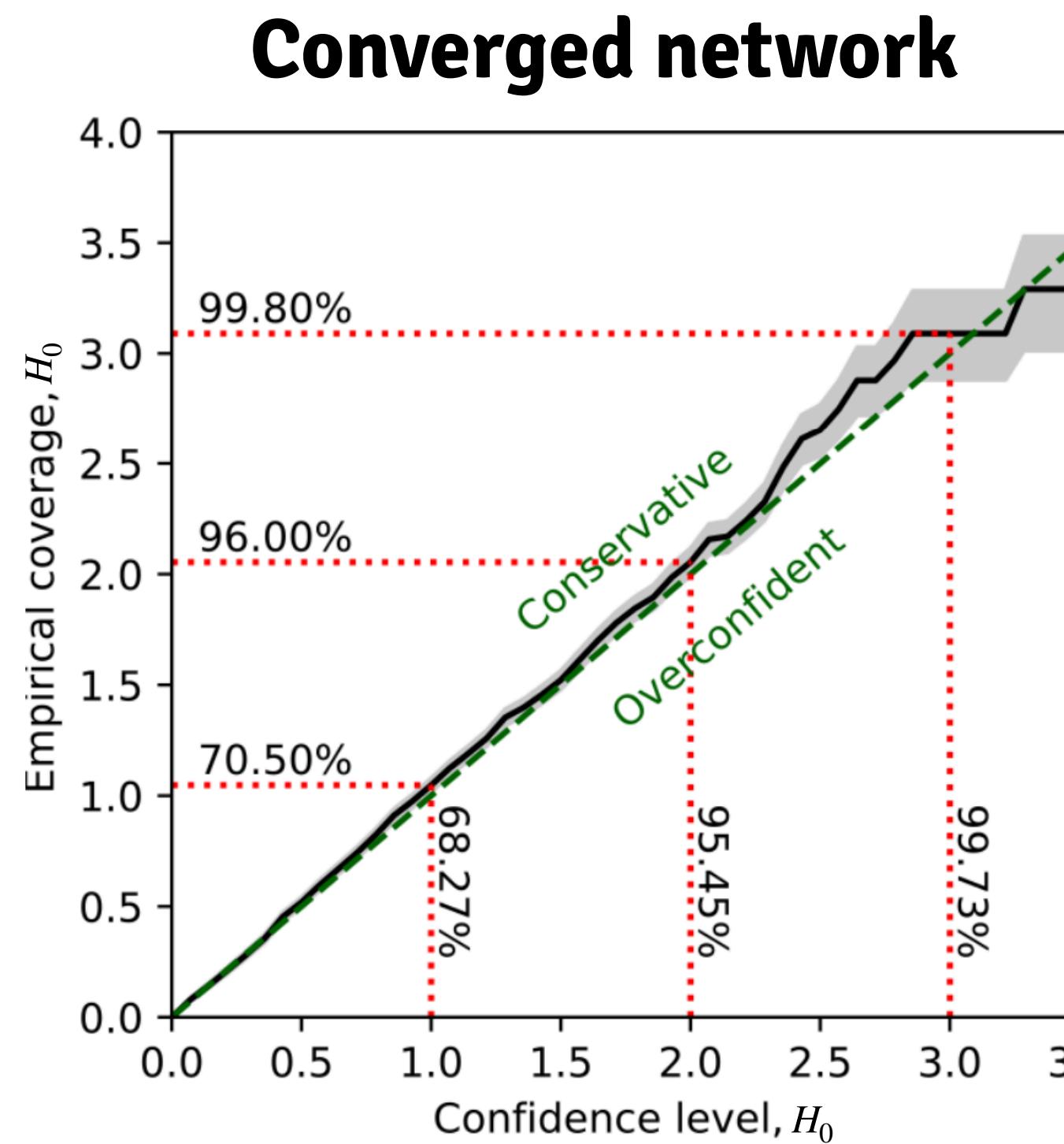
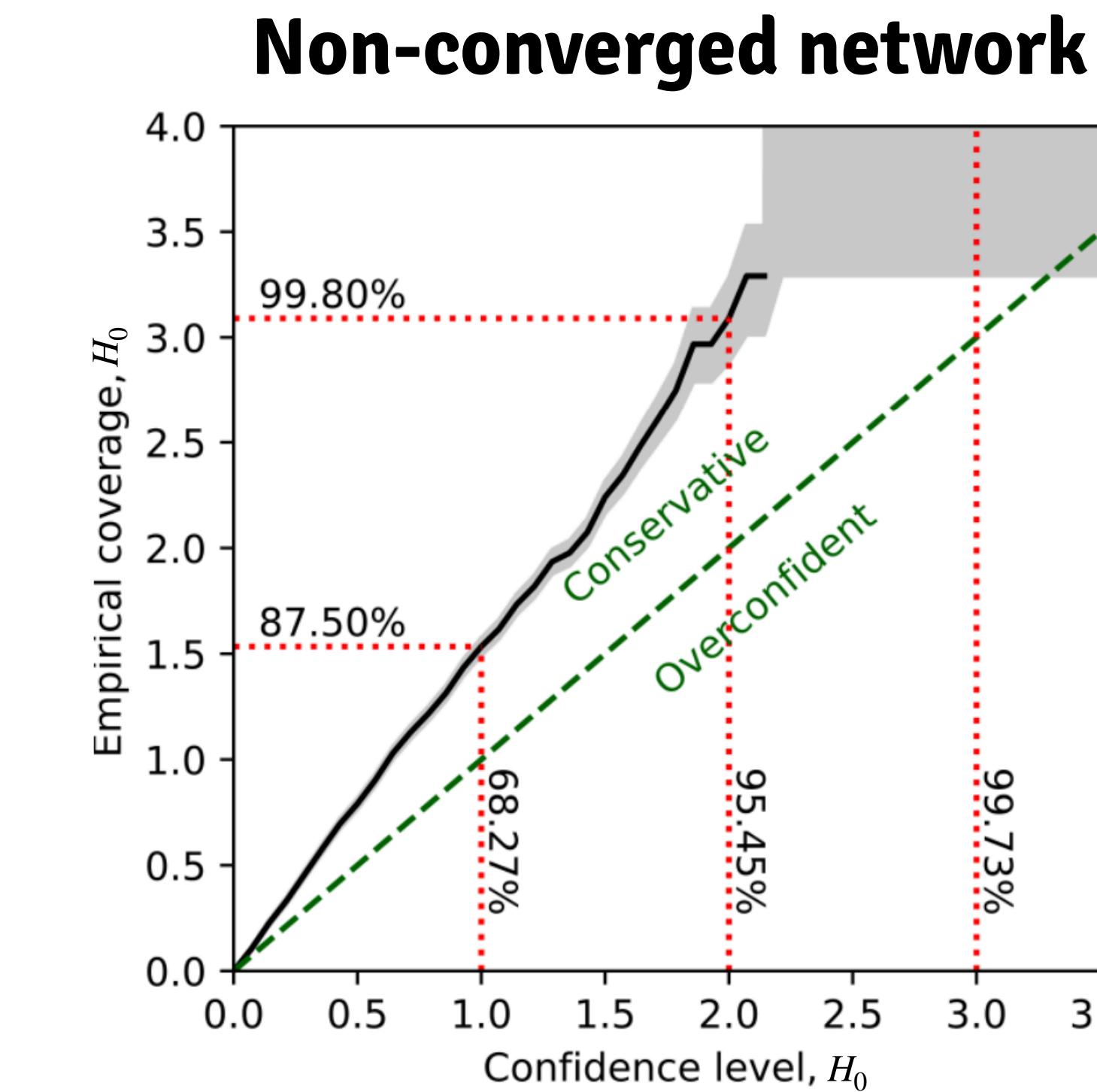


$$p(\theta|x) \quad \forall \mathbf{x} \sim p(\mathbf{x})$$

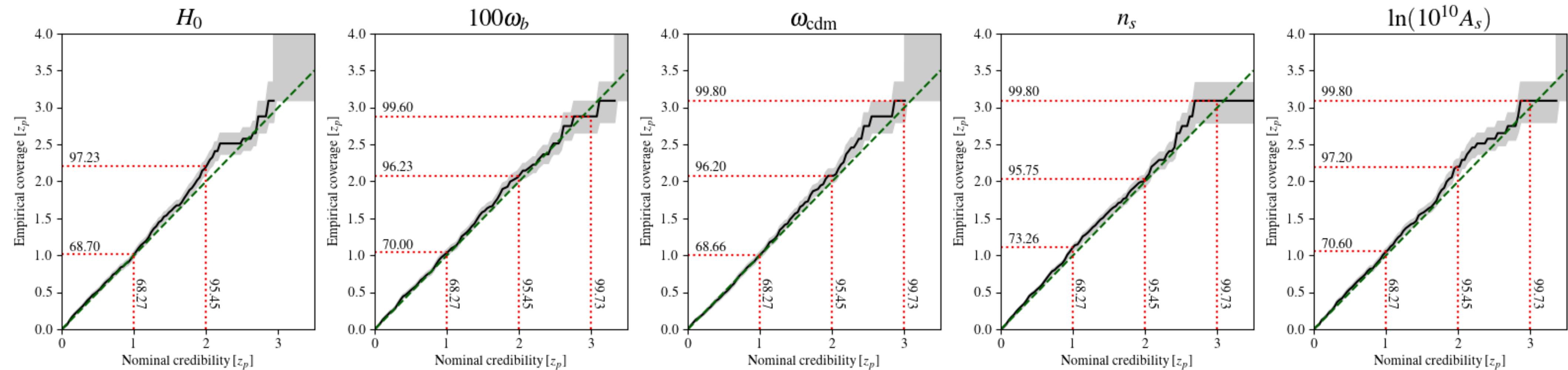
Ex: Is the estimated **68.27% interval** covering the **ground truth** in ~68% of the cases?



We can empirically estimate the Bayesian coverage



Coverage test for Stage-IV 3x2pt



GFA++ 2403.14750

Empirical coverage and confidence level
match to excellent precision!