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We are entering in the era of ultra-high precision cosmology

...................................................................................................................................................................................................

2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030
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Nancy G. Roman Space Telescope

Simons Observatory

The Soth Pole Teescope (ST)

LiteBIRD

[Credit A. Bayer]



Various datasets point at cracks in the ACDM model



Various datasets point at eracks in the ACDM model

H, tension

CMB 2018 Planck - ——
CMB 2025 (ACT-DR6) | —@—
CMB 2024 (SPT-3G+lensing+tauprior) ——
BBN+DESIBAO 2024 - —Q— _1 1
BBN+eBOSS 2022 —— Ho [kms™ Mpc™-]
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Modeled Phenomena

Strong lensing 2020 (7 lensed QSO asser)
FRBs 2023 (18 local) -
FRBs 2024 (64 local)

66 68 70 72 74 76 78 80

[CosmoVerse White
Paper: 2504.01669]
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CMB 2018 Planck

CMB 2025 (ACT-DR6)

CMB 2024 (SPT-3G+lensing+tauprior)
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—o— Cosmological Model Dependent
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Modeled Phenomena
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[CosmoVerse White
Paper: 2504.01669]
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Various datasets point at eracks in the ACDM model

H, tension Ss tension?
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Various datasets point at eracks in the ACDM model

Ho tension Ss tension? Latest DESI results
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[DESI BAO DR2: 2503.14738]
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To learn about the universe, we need to solve the inverse problem
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Some ACDM extensions | studied in the past

[GFA+2008.09615] [GFA, Braglia+ 2308.12345] [Schéneberg & GFA 2206.11276] [GFA+ 2112.13862]

[S'[GFA+GZ|;02;22029§;4401 [Murgia, GFA+ 2009.10733] [Schéneberg, GFA+ 2306.12469]
imon, + :




Some ACDM extensions | studied in the past

[GFA+2008.09615] [GFA, Braglia+ 2308.12345] [Schéneberg & GFA 2206.11276] [GFA+ 2112.13862]

[S'[GFA+GzFiAOZé122()l;9§l44O] [Murgia, GFA+ 2009.10733] [Schoneberg, GFA+ 2306.12469]
imon, + :

Hundreds of other models, e.q. see reviews:

“In the Realm of the Hubble tension - a Review of Solutions™ Di Valentino+ [2103.01183]
“The Ho Olympics: a fair ranking of proposed models™ Schéneberg, GFA+ [2107.10291]
“The CosmoVerse White Paper”, Di Valentino, Levi+ [2504.01669]
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data

theories challenge

@ Expensive simulations

@ High-dimensional parameter spaces
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Machine learning is
having a strong impact
in cosmology
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Two main approaches in ML

to speed up model evaluations of to improve the sampling in high-
cosmological observables dimensional parameter spaces




For testing invisible neutrino
decays with latest cosmic data

For efficient inference from
Euclid data, with applications
to evolving dark energy



1.

For testing invisible neutrino
decays with latest cosmic data

Ongoing work, to appear soon
arXiv:2506.XXXXX
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Oscillation experiments have provided convincing
evidence that neutrinos have mass

b1 <! oy
Normal Inverted
D m, 20.06 eV » m, 2 0.10 eV

[Salas et al. 1806.11051]
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Cosmological bounds

1.2 |
—— DESI4+CMB [CamSpec]
DESI+CMB [P1ik|
1.Op-m=====~__ i —— DESI+CMB [L-H]
E\*\\ === DESI+CMB [CamSpec] (wow,CDM)
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S~ \\
R \

~
~
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o
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0.00 0.05 0.10 0.15

2. My [eV]

DESI DR2 Results 1l [2503.14738]

Cosmology has given tightest bound to date

Z m, < 0.064 eV | (95%, DESI+CMB [CampSpec])
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Cosmological bounds
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DESI DR2 Results 1l [2503.14738]

Cosmology has given tightest bound to date

Z m, < 0.064 eV | (95%, DESI+CMB [CampSpec])

However, these bounds are model dependent

z m, < 0.163 eV (95%, wow,CDM: DESI+CMB)
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Cosmological bounds

1.2 !
—— DESI4+CMB [CamSpec]
DESI+CMB [P1iK]
1.0 -m=====~__ —— DESI+CMB [L-H]
- == DESI4+CMB [CamSpec]| (wow,CDM)
0.8
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= et
R 0.6 N
~— .
A, 3
0.4-
0.2
0.0 — = . —
0.00 0.05 0.10 0.15 0.20
>_ My [eV]

DESI DR2 Results 1l [2503.14738]

Cosmology has given tightest bound to date

Z m, < 0.064 eV | (95%, DESI+CMB [CampSpec])

However, these bounds are model dependent

z m, < 0.163 eV (95%, wow,CDM: DESI+CMB)

What about changing neutrino properties?
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Decaying neutrinos

@ 2 neutrinos decay in the SM but 7, ~ (Gam>)™! > 10% yr> 1,

13



Decaying neutrinos

@ 2 neutrinos decay in the SM but 7, ~ (Gam>)™! > 10% yr> 1,

@ Radiative decays are strongly constrained 7, > 10— 10'° ¢,
Aalberts, Ando et al. [1803.00588]
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Decaying neutrinos

@ 2 neutrinos decay in the SM but 7, ~ (Gam>)™! > 10% yr> 1,

@ Radiative decays are strongly constrained 7, > 10— 10'° ¢,
Aalberts, Ando et al. [1803.00588]

@ Decays to dark radiation, much less constrained

¢ Appears naturally in many simple
extensions of the seesaw mechanism

gint — /1i¢17i}/51/4 + h.c.

Escudero & Fairbairn [1907.05425]
Escudero et al. [2007.04994]

13



AP (k)/ P massless

Decaying neutrinos

0.00

—0.08 -

—0.16 -

-0.24 -

-0.32 -

-0.40

Zmy = 0.6 eV

Stable

Fixed Hy

10~4

10-3 101

k [h/Mpc]

A finite neutrino lifetime allows
to reduce their impact on structure
growth and expansion rate
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AP (k)/ P massless

Decaying neutrinos

0.00

—0.08 -

—0.16 -

-0.24 -

-0.32 -

-0.40

Zm,/ = 0.6 eV

Stable

Fixed Hy

10~4

10-3 101

k [h/Mpc]

A finite neutrino lifetime allows
to reduce their impact on structure
growth and expansion rate

This permits a relaxation of neutrino
mass bounds from cosmology

14



CMB+ BOSS + SNla

no prior
reject if I', > H(T = m,/3)

0.6 0.8 1.0

Abellan et al. [2112.13862]

1.2

Back in 2021, we showed that non-
relativistic neutrino decays to DR can
relax mass bounds up to ) m, <04 eV
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CMB+ BOSS + SNla

no prior
reject if ') > H(T =m,,/3)

0.6 0.8 1.0

Abellan et al. [2112.13862]

1.2

Back in 2021, we showed that non-
relativistic neutrino decays to DR can
relax mass bounds up to ) m, <04 eV

GOAL

Build emulator

update mass

bounds

15



Emulating an Einstein-Boltzmann Solver (EBS)

Cosmo. pars
Hy, €., A, ng,...
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Emulating an Einstein-Boltzmann Solver (EBS)

Background/thermo egqs.

Cosmo. pars
Hy, ., A, n

S, S, e o o
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Emulating an Einstein-Boltzmann Solver (EBS)

Cosmo. pars

Ho, Qb’ AS’ VZS, e —

Background/thermo egqs.

Perturbation eqs.

0,0 (g k,7) = ...
0,0f; (g k,7) = ...

0.Af (g k7)) = ...

for1=c,b,y,v and V k, g
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Emulating an Einstein-Boltzmann Solver (EBS)

Background/thermo egqs. Perturbation egs.

0,0 (g k,7) = ...
0,0f; (g k,7) = ...

Cosmo. pars

H(), Qb’ AS’ nS, e —

0.Af (g k7)) = ...

for1=c,b,y,v and V k, g

Observables

— D,(2), C2Y, P, (h),...
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Emulating an Einstein-Boltzmann Solver (EBS)

Background/thermo egqs. Perturbation egs.

0,0 (g k,7) = ...
0,0f; (g k,7) = ...

Observables

— D,(2), C>Y, P,(k),...

Cosmo. pars
Hy, ., A, n

S, S, e o o

0.Af (g k7)) = ...

for1=c,b,y,v and V k, g

A single call to an EBS (e.g. CLASS) can be time-consuming in ACDM extensions.
Moreover, one often needs ~10¢ model evaluations for accurate inference.
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Emulating an Einstein-Boltzmann Solver (EBS)

< /7 §W7‘$ A
Cosmo. pars ;\\‘ll( A“‘&‘&{’"’“ }\“)./;} Observables
N 00:9(‘:!‘0 $
HO, Qb, As, nS’ o o o _> \ //}Zf‘x{\\ 4//5‘,&{ | _> DA(Z), C;(Y, Pm(k), o
AN OSKL /NN :
v

'DEA: Replace the calculation of the full system of linear Einstein-Boltzmann
egs. by a trained emulator, e.g. a neural network (NN)

16



Emulating an Einstein-Boltzmann Solver (EBS)

Many EBS emulators available on the market (e.g. CosmoPower, CosmicNet, Capse.jl)
We rely on CONNECT [Nygaard et al. 2205.15726]
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Emulating an Einstein-Boltzmann Solver (EBS)

Many EBS emulators available on the market (e.g. CosmoPower, CosmicNet, Capse.jl)
We rely on CONNECT [Nygaard et al. 2205.15726]

Latin Hypercube (LHC) sampling

Achieves close-to-uniform sampling,

but models near the corners have
very low likelihood
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Emulating an Einstein-Boltzmann Solver (EBS)

Many EBS emulators available on the market (e.g. CosmoPower, CosmicNet, Capse.jl)
We rely on CONNECT [Nygaard et al. 2205.15726]

Latin Hypercube (LHC) sampling Hypersphere sampling

Achieves close-to-uniform sampling, Allows to concentrate points in

but models near the corners have high-likelihood regions
very low likelihood — more efficient and accurate

17



Building emulator for decaying neutrinos

SRS Training data: 2.5 x 10" samples of {0, x}
e ] in the 8-dimensional hypersphere

0={w, o, Hy,, In(10"°A), n, 7., m, log, "}

(C}T, CJF, CJF, C??, H(z), DA(2)}

=
|

Training data

Ty e o
AN “ S i2g o DR ey W )
P RN SV
S S R CLASS contour
L ‘?"7\;1‘,;;*3'«?',3» . . )
0 I S TR T N AT T
1

0.o 01 02 03 04 05 0.6

> my/eV
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Building emulator for decaying neutrinos

S Training data: 2.5 x 10" samples of {0, x}
el in the 8-dimensional hypersphere

0={w, o, Hy,, In(10"°A), n, 7., m, log, "}
x ={C}T, CIF, CJF, C¥?, H(2), D,(2)}

Training data

Data generation took ~ 1day on 128 CPUs
CLASS contourj

B —— (training the NNs was much faster)
0.o 01 02 03 04 05 0.6
> my/eV

18



Cosmological constraints

CLASS ( ~ 3 weeks)
CONNECT ( ~ 2 hrs)

log (I, o Mpe

0.06 0.28 0.5
> m,/eV

CONNECT posteriors are in good agreement
with CLASS, while being < 250 faster

19



Cosmological constraints

CLASS ( ~ 3 weeks)
CONNECT ( ~ 2 hrs)

Log (T, /kms™ Mpc ™)

0.06 0.28 0.5
> m,/eV

CONNECT posteriors are in good agreement
with CLASS, while being < 250 faster

New mass bound:

Z m, < 0.24 eV | (95%, DESI DR2+CMB [Plik])
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Cosmological constraints

CLASS ( ~ 3 weeks)
CONNECT ( ~ 2 hrs)

LoglO(F,,/kms_lMpC_l)

0.06 0.28 0.5
> m,/eV

CONNECT posteriors are in good agreement
with CLASS, while being < 250 faster

New mass bound:

Z m, < 0.24 eV | (95%, DESI DR2+CMB [Plik])

Next step: derive bounds for neutrino decays with
realistic mass splittings v; - v, + ¢

19



Based on arXiv:2403.14750
arXiv:2506.XXXX

with Guadalupe Cainas-Herrera, Matteo
Martinelli, Oleg Savchenko, Noemi Anau
Montel & Christoph Weniger

2.

For efficient inference from
Euclid data, with applications
to evolving dark energy




Bayesian inference

Posterior Likelihood Prior

p0|xy) x p(x,|0)p(0)

XO - Data
@ : Parameters

21



Bayesian inference
XO : Data

@ : Parameters
Posterior Likelihood Prior

p0|xy) x p(x,|0)p(0)

Metropolis-Hastings algorithm
= Traditional likelihood-based methods

allow to get samples from the full joint
posterior for some fixed data X,

Likelihood

A a 0~p@lx),  for BeR

21



Current challenges

[Handley+ 1506.00171]

@ MCMC methods scale poorly 100 .
with the dimensionality |

| |
PoLYCHORD

MULTINEST ===see===-

Number of Likelihood evaluations, N,

1 2 4 8 16 32 64 128 256

Number of dimensions, D
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Current challenges

@ MCMC methods scale poorly . [IHandlley+ 1!1506.0(?171]-
. . . . - PoLYCHORD -
with the dimensionality

!

MULTINEST ==ss=sa=--

Euclid

~ 50 — 100 nuisance

Number of Likelihood evaluations, N,

1 2 4 8 16 32 64 128 256

Number of dimensions, D
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Current challenges

@ MCMC methods scale poorly
with the dimensionality

!

Euclid
~ 50 — 100 nuisance

¢ Often the full likelihood
functionis intractable

Number of Likelihood evaluations, N,

[

-
—
o

p—d
-
©

108
107
10°
10°
104
10°

102 |

| |
PoLYCHORD

MULTINEST

[Handley+ 1506.00171]

8 16 32

Number of dimensions, D

64

128

256

22



Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

“Can we still do Bayesian inference if all we can do is simulate the data?”

23



Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

“Can we still do Bayesian inference if all we can do is simulate the data?”

Simulator mapping from X ~ p(x|6)
parameters 0 to data X (implicit likelihood)

23



Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

[Credit: B. Wandelt]

20

15 |

Data x

10

0.2

0.4 0.6

Parameter @

0.8

1.0
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Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

Generate @ from prior
20 |

151

Data x

10}

O SN N TN lialEimE UL e R il i IEEEIEEeiiE R

0.0 02 04 0.6 0.8 1.0

[Credit: B. Wandelt]
Parameter @



Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

[Credit: B. Wandelt]

20

15

Data x

10 |

Simulate x for each @
i.e.,, X~ p(x|0)

Parameter @
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Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

This is a sample from p(0, x)
20 )

15

Data x

10|

[Credit: B. Wandelt]

Parameter @



Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

[Credit: B. Wandelt]

20

15

Data x

10|

Measure actual x,,

0.2

Parameter @

0.4 0.6
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Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

[Credit: B. Wandelt]

20

15

Data x

10

Slice through p(0, x) at x,,

0.2

Parameter @

04 0.6
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Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

Posterior p(0 | x,)

10

045 050 0.55 060 0.65 070 0.75 0.80

[Credit: B. Wandelt]
Parameter 6
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Usual steps in SBI

l. Simulation: get N samples {(x'1), 0, (x?,0?), ..., x™,0™))
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Usual steps in SBI

l. Simulation: get N samples {(x'1), 0, (x?,0?), ..., x™,0™))

Ex: CMB simulator

Il. Training: train a NN to learn posterior f (6, x) ~ p(f [ x)

lll. Inference: evaluate trained network at x = x,, to get p(@ | x,)

25



SBI comes in many “flavors™:

Neural posterior estimation (NPE) — p(0]x)

Neural likelihood estimation (NLE) — p(x|6)

Neural ratio estimation (NRE) — p(@|x)/p(0)

26



Neural posterior estimation (NPE) — p(0]x)

SBI comes in many “flavors”: Neural likelihood estimation (NLE) — p(x|6)

Neural ratio estimation (NRE) — p(@|x)/p(0)

We focus on a recent algorithm:

MNRE = Marginal Neural Ratio Estimation

Implemented in Swyft [Miller et al. 2011.13951]

26



Neural Ratio Estimation px,0)  p@|x)

px)p@)  p®)
MNRE Train NNs to solve a binary classification problem:

in a nutshell (x.0) ~ p(x)p(6)

27



Neural Ratio Estimation px,0)  p@|x)

px)p@)  p@)

MNRE Train NNs to solve a binary classification problem:

in a nutshell (x,0) ~ p(x,0) (x,0) ~ p(x)p(0)

Focus on marginals

Instead of estimating all More flexible

parameters, cherry-pick the | and efficient!
ones we care about

27




SBI has already been applied to different LSS surveys:

) BOSS [Lemosetal. 2310.15256]

@ DES [Jeffreyetal. 2403.02314]

@) KiDS [von Wietersheim-Kramsta et al. 2404.15402]

@) HSC [Novaesetal.2409.01301]
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SBI has already been applied to different LSS surveys:

) BOSS [Lemosetal. 2310.15256]

@ DES [Jeffreyetal. 2403.02314]

@) KiDS [von Wietersheim-Kramsta et al. 2404.15402]

@) HSC [Novaesetal.2409.01301]

apply MNRE to Euclid photometric observables

28



[ESA’s Euclid space satellite]

N oy

@ OnJuly 15t 2023, Euclid was launched to L2
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[ESA’s Euclid space satellite]

N oy

@ OnJuly 15t 2023, Euclid was launched to L2

@ For 6 years, Euclid will measure the
shapes and redshifts of billions of
galaxies, across ~1/3 of the sky
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[ESA’s Euclid space satellite]

N oy

@ OnJuly 15t 2023, Euclid was launched to L2

@ For 6 years, Euclid will measure the
shapes and redshifts of billions of
galaxies, across ~1/3 of the sky

@ First public data release expected in 2026

29



Which are the Euclid primary observables?

Background galaxies &

Lensed image

of background
galaxies (shapes)

foreground
galaxies
(positions)

30



3x2pt photometric probes

Summarise maps of galaxy positions/shapes using three 2-point
statistics (3x2pt) measured at 10 tomographic redshift bins

@) Cosmic Shear ’ . ’
°-@

) Galaxy-Galaxy lensing @----- ’

@ Galaxy clustering

31



3x2pt photometric probes

Summarise maps of galaxy positions/shapes using three 2-point
statistics (3x2pt) measured at 10 tomographic redshift bins

@) Cosmic Shear ’ . ’
°-@

) Galaxy-Galaxy lensing @----- ’

€ Galaxy clustering

..described by angular power spectra Cj;'(£) = sz WA (W (2) P, (ks,2)

31



NOTE: We use a simplified simulator/likelihood (12 nuisance params)

Swyft analysis of Euclid 3x2pt

1. Simulator:

We generate 50k realisations of CA";]‘.B(L”) — C;;.‘B(f) + n;;.‘B(z/”)
3x2pt spectra with gaussian noise " J(0,C)

32



NOTE: We use a simplified simulator/likelihood (12 nuisance params)

Swyft analysis of Euclid 3x2pt

1. Simulator:

We generate 50k realisations of CAB(L”) = C;%(0) + n"(¢)
3x2pt spectra with gaussian noise \/ (0,C)

2. Network: We pre-compress spectra into features

O . R

COSIMOo nuisance . .
ratio estimators
0 — {H(), a)Cdma nS oo } + {AIA9 bl, .« o } » 6 f X V(l,]), where i 75]
< > l *
L Np m J O 01'
g N (- N () S
| @ Cholesky | ffeatores) 7 g
Q K v, S ”..x Iy 1
x = | 5| 1 S,
N (@) pca , z
: : S,
Z 4 @ Linear S q
) > compression 2N, J
k N, spectra X M bin,? J & p J params

32



Forecast ACDM
posteriors

mmmm Swyft, 1.5 hrs (simulation)
+ 5 mins (training)

mmmm \CMC, ~ 3 days
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Forecast ACDM
posteriors

MNRE & MCMC are in

excellent agreement!

lOOwb
o
'\/7 \}é\ ‘.DO ‘Dé\ O")O

Wedm

mmmm Swyft, 1.5 hrs (simulation)
+ 5 mins (training)

mmmm \CMC, ~ 3 days
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Forecast ACDM
posteriors

mmmm Swyft, 1.5 hrs (simulation)
+ 5 mins (training)

mmmm \CMC, ~ 3 days

100wb
o

Dramatic reduction
in CPU timel

Wedm
&

o

MNRE & MCMC are in

excellent agreement!




What about combining different cosmological probes?

34



What about combining different cosmological probes?

Canonical example:

0.7

0.6

0.5

0.4

0.3

Planck 2018 Results. VI. [1807.06209]

----- TT,TE,EE+lowE

+lensing

Bl BAO

—0.10

65

60

55

50

45
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Joint analyses of CMB & LSS

Very complementary
(high-z vs. low-z, linear vs. non-linear)
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Joint analyses of CMB & LSS

Very complementary
(high-z vs. low-z, linear vs. non-linear)

Break parameter degeneracies

B Fuclid
B Planck

B Planck + Fuclid

64

70

2.0 2.5

100wb

0.115 0.125

Wedm

0.96

3.00

In(10A,

3.05
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Can we do CMB+LSS analyses in SBI?
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Can we do CMB+LSS analyses in SBI?
Unfortunately, building a realistic Planck simulator seems very challenging
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Can we do CMB+LSS analyses in SBI?
Unfortunately, building a realistic Planck simulator seems very challenging

BUT we can easily build an “effective” a=0-—0
simulator using posterior samples
from a previous MCMC run

prior samples J k posterior samples

f,(@a = 0) =~ p(@ | x,)

36



Application to evolving dark energy

B DESI+CMB+Pantheon+
DESI+CMB+Union3
R BN DESI4+CMB+DESY5
\>, --- DESI+CMB

' [DESI BAO DR2: 2503.14738]

R R
Wy
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Application to evolving dark energy

What can Euclid data (and

R e its combination with current

Bl DESI4+CMB+Panth .
DESI:CMBiUiIilOn;OH+ probes) tell us about this?

B DESI+CMB+DESY)5
=== DESI4+CMB

[DESI BAO DR2: 2503.14738] s

0 0% 06 0t 0200
Wy



Application to evolving dark energy

What can Euclid data (and

1} (o S = its combination with current

| DESI4+CMB+Pantheon+ 0
: ?
, S e probes) tell us about this:
DESI+CMB+DESY5
| - == DESI+CMB l

S

8

i [ o forecast

sl o S bestfit wyw, CDM
' [DESI BAO DR2: 2503.14738] . .

e } . . . . ——

~E CER HE 08 R e

Wo



Forecast wow,CDM posteriors

Baseline = DESI + Planck + Pantheon+

| — SBI

N Baseline

A
C)) -
/\ -
— IR o —
/\ /Q /Q /Q



Forecast wow,CDM posteriors

Baseline = DESI + Planck + Pantheon+

—— SBI @) Euclid alone could detect the fiducial

wow, CDM model at the ~ 56 level

o | Baseline
7~ |  Euclid




Forecast wow,CDM posteriors

Baseline = DESI + Planck + Pantheon+

| —— SBI @ Euclid alone could detect the fiducial
PNl wow, CDM model at the ~ 56 level
>
S /%69:'. ...........................................................................................
& @ The combination with Planck+DESI
o| Baseling data would rise the detectionto ~ 7o
~ 1 Euclid
& . Baseline + Euclid
T



Forecast wow,CDM posteriors

Baseline = DESI + Planck + Pantheon+

o *ACDM  --- MOMC
j ~ —— SBI o _
of & SBI. isin gqo_d agreement with MCMC,
a while requiring only ~3% of the number
o of model evaluations used by MCMC
SERSTI -
.
A
. Baseline
o
~ 1 Euclid \
~ | Baseline + Euclid ,
/\/. '
B > N
/\/ /Q% /Q. /Q



", "Euclid's view q.f'the Péfs"eus-élu's't'er,of galaxies -

L

Conclusions

@ Modern deep learning techniques will be key
to learn as much as we can about the dark
sector and neutrinos from future data

Emulators achieve ultra-fast model evaluations

— applied to decaying neutrino models, these can
relax current mass bounds upto ) i, <024 ¢V

¢ SBI methods provide a simulator-efficient and scalable

alternative to MCMC — applied to Euclid+Planck, these
datasets could detect evolving dark energy at ~ 7o
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", "Euclid's view q.f'the Péfs"eus-élu's't'er,of galaxies -

Conclusions

@ Modern deep learning techniques will be key
to learn as much as we can about the dark
sector and neutrinos from future data

Emulators achieve ultra-fast model evaluations

— applied to decaying neutrino models, these can
relax current mass bounds upto ) i, <024 ¢V

¢ SBI methods provide a simulator-efficient and scalable

alternative to MCMC — applied to Euclid+Planck, these
datasets could detect evolving dark energy at ~ 7o THANK YOU!

g.francoabellan@uva.nl
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BACK-UP



Errors in emulated CMB spectra for neutrino decays

PP

|D£connect _ chlass |/rmS(D£C|aSS)

101104 1000 2000 10'10%4 1000 2000 101102 1000 2000 101102
[ [ [

The 10 and 20 percentile errors in the CMB spectra (from
the test set) are almost always below 1%

1000 2000
[
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Strategy: train a neural network d,(x,0) € [0,1] as a binary classifier,
so that

& d¢(X, 0)~1 if (x,0)~ px,0) =px|0)p)

@ d,x,0)~0 if (x,0)~ p(x)p©)

Note: ® denotes all the network parameters




We have to minimise a loss function w.r.t. the network params. ©

Lld,(x,0)] = — dedﬂ _p(X, &)In(d,(x,0)) + p(xX)p(@)In(l — d (x, 0))_

which yields

p(x,0) _ rx;0)
p(x,0) +px)p@) r(x:0)+1

dy(X, 0) ~




Posteriors for 3x2pt
nuisance parameters

MNRE & MCMC are again

in good agreement

mmmm Swyft, 1.5 hrs (simulation)
+ 5 mins (training)

mmmm \N[CMC, ~ 3 days
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€ Does MNRE perform well with highly non-Gaussian posteriors?

@ Asanexample, we test a model of CDM decaying to DR + WDM

(proposed to explain the Sg tension) Abellén et al. 2102.12498]

[Bucko et al. 2307.03222]

Decay rate |
WDM velocity kick Vy,
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Forecast constraints

on decaying DM
3.5T Improve current limits by
| ~1 order of magnitude!
. j s KiDS-1000
-|E 3.0 (Bucko et al.) h
XM B Stage [V (Swyft)/_> : ‘::'rs
§ ] Stage 1A% (MCMC) ) e 8 days!
MNRE & MCMC in J= |
good agreement =

—2.5 —2.0 —1.5
log;o(I" x Gyr)

47



But can we trust our results?

...even if NNs are often seen as "black boxes”, it is possible to perform
statistical consistency tests which are impossible with MCMC

48



Trained networks can estimate effortlessly
the posteriors for all simulated observations

MCMC MNRE with swyft

49



Ex: Is the estimated 68.27% interval covering the
ground truth in ~68% of the cases?
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We can empirically estimate the Bayesian coverage

Converged network Non-converged network
4.0 4.0
3.5 - 3.5 - ,/
1.99:80% et | L 99.80% ... o’

f 3 0 . mo 30 - ,/./
2 g o7
© 2.5 A © 2.5 A JRe
Q Q 7/
> 96.00% > &
3 50 4-28:00% ... 3 50 o
o o D 8
S S 87.50% 0
= 1.5 i : o 1.5 brrssscaiinnnnnn : :
5 5 5 7 5

1.0 - o)) E@ O 1.0 1 /%0\ Eko O

0o o1 © :00 o ©
0.5 - 3 v @ 0.5 - 3 o o
X S S X S X
0.0 f T é T ; 0.0 T U T ; T U
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Confidence level, A, Confidence level, H,
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Coverage test for Stage-1V 3x2pt

Dcdm

]
N
1

e
<
|

e

(%
o
|

.
<
1

<o

'
o
1

:JJ
o
1

5 5 Tl 7 |3 A 5
o 2.5 > 2.5 : > 2.5 s > 2.5 : > 2.5 :
= 9723 = : < o = : = 97.20 :
B[y ! I B Y : g 19620 e 2 : 2 |9575 : B ey : :
8 20_ : 8 20_ : E 8 20_ I: E 8 20_ ......................... ; E 8 20_ : E
B : B : : B A : B : : = : :
‘= : ‘= . : ‘= 4 . . ‘= : . ‘= : :
g 197 : & 197 : : & 197 : : & 197 : : & 197 : :
= . = . . = . . = . . = . .
3 : o : : &3 : : &3 1326 . : : &3 : :
Lod6870. . 5 Lo+ 19%. : 5 Lo 6866 E E 104 _ E E 1o -0 E E
0.5 4 N 0.5 - o T 0.5 - [ N ) 0.5 : N R 0.5 4 N )
e s o i o : et o s o
0.0 t t . 0.0 t t t 0.0 t t t 0.0 " t ' 0.0 " . t
0 | 2 3 0 | 2 3 0 | 2 3 0 | 2 0 | 2 3

Nominal credibility [z,] Nominal credibility [z,] Nominal credibility [z,] Nominal credibility [z,,] Nominal credibility [z,]

GFA++ 2403.14750

Empirical coverage and confidence level

match to excellent precision!




