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We are entering in the era of ultra-high precision cosmology

[Credit A. Bayer]
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Various datasets point at cracks in the ΛCDM model

H0 tension 

[CosmoVerse White 
Paper: 2504.01669]

S8 tension?

Seems to be dead

after KiDS-Legacy…

[KiDS-Legacy: 2503.19441]

Latest DESI results

[DESI BAO DR2: 2503.14738]
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Data

To learn about the universe, we need to solve the inverse problem

Theory
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Some ΛCDM extensions I studied in the past

Decaying DM

[GFA+ 2008.09615]
[GFA+ 2102.12498]

[Simon, GFA+ 2203.07440]

Early Modified Gravity

 /Early Dark Energy 

[GFA, Braglia+ 2308.12345]
[Murgia, GFA+ 2009.10733]

Interacting Stepped DR

[Schöneberg & GFA 2206.11276]
[Schöneberg, GFA+ 2306.12469]

[GFA+ 2112.13862]

Decaying neutrinos
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Some ΛCDM extensions I studied in the past

Decaying DM

[GFA+ 2008.09615]
[GFA+ 2102.12498]

[Simon, GFA+ 2203.07440]

Early Modified Gravity

 /Early Dark Energy 

[GFA, Braglia+ 2308.12345]
[Murgia, GFA+ 2009.10733]

Interacting Stepped DR

[Schöneberg & GFA 2206.11276]
[Schöneberg, GFA+ 2306.12469]

[GFA+ 2112.13862]

Decaying neutrinos

Hundreds of other models, e.g. see reviews:

‘’The H0 Olympics: a fair ranking of proposed models’' Schöneberg, GFA+ [2107.10291] 

‘’In the Realm of the Hubble tension - a Review of Solutions’’ Di Valentino+ [2103.01183] 

“The CosmoVerse White Paper”, Di Valentino, Levi+ [2504.01669]
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Comparing these vast volumes of cosmic data against the 
ever-increasing space of theories is a huge challenge
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Expensive simulations

High-dimensional parameter spaces

Comparing these vast volumes of cosmic data against the 
ever-increasing space of theories is a huge challenge
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Machine learning is 
having a strong impact

in cosmology
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Two main approaches in ML
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Two main approaches in ML

Emulators
to speed up model evaluations of 
cosmological observables

New statistical methods
to improve the sampling in high-
dimensional parameter spaces



but…
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1.

2.

For testing invisible neutrino 
decays with latest cosmic data

Emulators

Simulation-based inference 
For efficient inference from 
Euclid data, with applications 

to evolving dark energy



but…
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1.
For testing invisible neutrino 
decays with latest cosmic data

Emulators

Ongoing work, to appear soon 

arXiv:2506.XXXXX 
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Oscillation experiments have provided convincing 

evidence that neutrinos have mass

[Salas et al. 1806.11051]
Normal Inverted

∑ mν ≳ 0.06 eV ∑ mν ≳ 0.10 eV
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Cosmological bounds

Cosmology has given tightest bound to date

∑ mν < 0.064 eV (95%, DESI+CMB [CampSpec])

DESI DR2 Results II [2503.14738]



12

Cosmological bounds

Cosmology has given tightest bound to date

∑ mν < 0.064 eV (95%, DESI+CMB [CampSpec])

DESI DR2 Results II [2503.14738]

However, these bounds are model dependent

∑ mν < 0.163 eV (95%, w0waCDM: DESI+CMB )



12

Cosmological bounds

Cosmology has given tightest bound to date

∑ mν < 0.064 eV (95%, DESI+CMB [CampSpec])

DESI DR2 Results II [2503.14738]

However, these bounds are model dependent

∑ mν < 0.163 eV (95%, w0waCDM: DESI+CMB )

What about changing neutrino properties?
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Fm5

ν )−1 ≳ 1033 yr ≫ tU

Decaying neutrinos
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2 neutrinos decay in the SM but τν ∼ (G2
Fm5

ν )−1 ≳ 1033 yr ≫ tU

Radiative decays are strongly constrained τν > 102 − 1010 tU
Aalberts, Ando et al. [1803.00588]

Decaying neutrinos

Decays to dark radiation, much less constrained

e−Γtνi

ϕ

ν4

Appears naturally in many simple 

extensions of the seesaw mechanism

Escudero et al. [2007.04994]
Escudero & Fairbairn [1907.05425]

ℒint = λiϕν̄iγ5ν4 + h . c .
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∑ mν = 0.6 eV

τν = 0.01tU
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A finite neutrino lifetime allows 

to reduce their impact on structure 
growth and expansion rate

Decaying neutrinos
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A finite neutrino lifetime allows 

to reduce their impact on structure 
growth and expansion rate

Decaying neutrinos

This permits a relaxation of neutrino 
mass bounds from cosmology
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Back in 2021, we showed that non-
relativistic neutrino decays to DR can 
relax mass bounds up to∑ mν < 0.4 eV

CMB+ BOSS + SNIa

Abellán et al. [2112.13862]
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Back in 2021, we showed that non-
relativistic neutrino decays to DR can 
relax mass bounds up to∑ mν < 0.4 eV

CMB+ BOSS + SNIa

Abellán et al. [2112.13862]

  GOAL
Build emulator  for neutrino decay 

model, and use it to update mass 

bounds in light of latest DESI data
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Emulating an Einstein-Boltzmann Solver (EBS)

H0, Ωb, As, ns, . . .
Cosmo. pars
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Emulating an Einstein-Boltzmann Solver (EBS)

H0, Ωb, As, ns, . . .
Cosmo. pars Observables
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Emulating an Einstein-Boltzmann Solver (EBS)

A single call to an EBS (e.g. CLASS) can be time-consuming in  extensions. 

Moreover, one often needs ~106 model evaluations for accurate inference.

ΛCDM

H0, Ωb, As, ns, . . .
Cosmo. pars Observables

DA(z), CXY
ℓ , Pm(k), . . .

Perturbation eqs. 
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Emulating an Einstein-Boltzmann Solver (EBS)

IDEA: Replace the calculation of the full system of linear Einstein-Boltzmann  

              eqs. by a trained emulator, e.g. a neural network (NN)

H0, Ωb, As, ns, . . .
Cosmo. pars Observables

DA(z), CXY
ℓ , Pm(k), . . .

Perturbation eqs. 

for i = c, b, γ, ν and ∀ k, q

∂τΔf0,i (q, k, τ) = . . .

∂τΔfℓmax,i (q, k, τ) = . . .

..
.

∂τΔf1,i (q, k, τ) = . . .

dxe

dτ
= . . . ,
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Many EBS emulators available on the market (e.g. CosmoPower, CosmicNet, Capse.jl)

We rely on CONNECT [Nygaard et al. 2205.15726]

Emulating an Einstein-Boltzmann Solver (EBS)
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Achieves close-to-uniform sampling, 
but models near the corners have 
very low likelihood



17

Many EBS emulators available on the market (e.g. CosmoPower, CosmicNet, Capse.jl)

We rely on CONNECT [Nygaard et al. 2205.15726]

Emulating an Einstein-Boltzmann Solver (EBS)

Hypersphere sampling

Allows to concentrate points in 

high-likelihood regions

more efficient and accurate

Latin Hypercube (LHC) sampling

Achieves close-to-uniform sampling, 
but models near the corners have 
very low likelihood
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Building emulator for decaying neutrinos
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ℓ , H(z), DA(z)}
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Building emulator for decaying neutrinos
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Training data:  samples of 
in the 8-dimensional hypersphere

2.5 × 104 {θ, x}

θ = {ωb, ωc, H0, ln(1010As), ns, τreio, mν, log10 Γν}

x = {CTT
ℓ , CEE

ℓ , CTE
ℓ , Cϕϕ

ℓ , H(z), DA(z)}

Data generation took ~ 1day on 128 CPUs

(training the NNs was much faster)



Γ ν
= H(z nr)

CLASS ( ∼ 3 weeks)
CONNECT ( ∼ 2 hrs)

19

Cosmological constraints

CONNECT posteriors are in good agreement 

with CLASS, while being  faster× 250
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Γ ν
= H(z nr)

CLASS ( ∼ 3 weeks)
CONNECT ( ∼ 2 hrs)

19

Cosmological constraints

(95%, DESI DR2+CMB [Plik])∑ mν < 0.24 eV

New mass bound:

CONNECT posteriors are in good agreement 

with CLASS, while being  faster× 250

Next step: derive bounds for neutrino decays with

realistic mass splittings νi → νj + ϕ
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2. Simulation-based inference 
For efficient inference from 
Euclid data, with applications 

to evolving dark energy

Based on arXiv:2403.14750  

                   arXiv:2506.XXXX

with Guadalupe Cañas-Herrera, Matteo 
Martinelli, Oleg Savchenko,  Noemi Anau 
Montel & Christoph Weniger
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Posterior Likelihood

p(θ |x0) ∝ p(x0 |θ)p(θ)
Prior

: Parameters
: Data

θ
x0

Bayesian inference
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Posterior Likelihood

p(θ |x0) ∝ p(x0 |θ)p(θ)
Prior

: Parameters
: Data

θ
x0

Bayesian inference

Traditional likelihood-based methods 
allow to get samples from the full joint 
posterior for some fixed data x0

θ ∼ p(θ |x0), for θ ∈ ℝD

Metropolis-Hastings algorithm
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Current challenges

MCMC methods scale poorly 
with the dimensionality 

[Handley+ 1506.00171]
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with the dimensionality 
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[Handley+ 1506.00171]
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Current challenges

MCMC methods scale poorly 
with the dimensionality 

For surveys like Euclid we expect 
 nuisance params!∼ 50 − 100

Often the full likelihood 
function is intractable

[Handley+ 1506.00171]
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Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

“Can we still do Bayesian inference if all we can do is simulate the data?”
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Simulation-based inference (SBI)
(a.k.a. likelihood-free or implicit inference)

“Can we still do Bayesian inference if all we can do is simulate the data?”

(implicit likelihood)
Simulator mapping from 

parameters  to data θ x

x ∼ p(x |θ)
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Simulation-based inference (SBI)

Parameter θ

D
at

a
x

[Credit: B. Wandelt]

(a.k.a. likelihood-free or implicit inference)



24

Simulation-based inference (SBI)

C
Parameter θ

D
at

a
x

[Credit: B. Wandelt]

Generate  from priorθ

(a.k.a. likelihood-free or implicit inference)
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Simulation-based inference (SBI)

Parameter θ

D
at

a
x

[Credit: B. Wandelt]

Simulate  for each  

   i.e.,    

x θ
x ∼ p(x |θ)

(a.k.a. likelihood-free or implicit inference)
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Simulation-based inference (SBI)

Parameter θ

D
at

a
x

[Credit: B. Wandelt]

This is a sample from p(θ, x)

(a.k.a. likelihood-free or implicit inference)
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Simulation-based inference (SBI)

Parameter θ

D
at

a
x

[Credit: B. Wandelt]

Measure actual x0

(a.k.a. likelihood-free or implicit inference)
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Simulation-based inference (SBI)

Parameter θ

D
at

a
x

[Credit: B. Wandelt]

Slice through  at p(θ, x) x0

(a.k.a. likelihood-free or implicit inference)
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Simulation-based inference (SBI)

Parameter θ
[Credit: B. Wandelt]

Posterior  p(θ |x0)

(a.k.a. likelihood-free or implicit inference)
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Usual steps in SBI

I. Simulation:  get  samples N {(x(1), θ(1)), (x(2), θ(2)), . . . , (x(N), θ(N))}

II. Training: train a NN to learn posterior  fϕ(θ, x) ≃ p(θ |x)

III. Inference: evaluate trained network at  to get x = x0 p(θ |x0)

Ex: CMB simulator 

Ωb =
Ωc =

5%

25%

30%

0%
5%

95%

. . .
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SBI comes in many ‘’flavors’’:

Neural posterior estimation (NPE) ⟶ p(θ |x)

Neural likelihood estimation (NLE) ⟶ p(x |θ)

Neural ratio estimation (NRE) ⟶ p(θ |x)/p(θ)
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SBI comes in many ‘’flavors’’:

[Miller et al. 2011.13951]

MNRE = Marginal Neural Ratio Estimation
Implemented in Swyft

We focus on a recent algorithm:

Neural posterior estimation (NPE) ⟶ p(θ |x)

Neural likelihood estimation (NLE) ⟶ p(x |θ)

Neural ratio estimation (NRE) ⟶ p(θ |x)/p(θ)
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Neural Ratio Estimation

Train NNs to solve a binary classification problem:    MNRE 

in a nutshell (x, θ) ∼ p(x, θ)

Ωb =
Ωc =

5%

25%

30%

0%
5%

95%

Ωb =
Ωc =

5%

25%

30%

0%
5%

95%

(x, θ) ∼ p(x)p(θ)

p(x, θ)
p(x)p(θ)

=
p(θ |x)

p(θ)
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Neural Ratio Estimation

Train NNs to solve a binary classification problem:

Focus on marginals

Instead of estimating all 
parameters, cherry-pick the 
ones we care about

More flexible 

and efficient!

    MNRE 

in a nutshell (x, θ) ∼ p(x, θ)

Ωb =
Ωc =

5%

25%

30%

0%
5%

95%

Ωb =
Ωc =

5%

25%

30%

0%
5%

95%

(x, θ) ∼ p(x)p(θ)

p(x, θ)
p(x)p(θ)

=
p(θ |x)

p(θ)
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SBI has already been applied to different LSS surveys:

HSC [Novaes et al. 2409.01301]

BOSS [Lemos et al. 2310.15256]

KiDS [von Wietersheim-Kramsta et al. 2404.15402]

DES [Jeffrey et al. 2403.02314]
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SBI has already been applied to different LSS surveys:

HSC [Novaes et al. 2409.01301]

BOSS [Lemos et al. 2310.15256]

KiDS [von Wietersheim-Kramsta et al. 2404.15402]

DES [Jeffrey et al. 2403.02314]

Our goal: apply MNRE to Euclid photometric observables



29

On July 1st 2023, Euclid was launched to L2

[ESA’s Euclid space satellite]
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[ESA’s Euclid space satellite]

For 6 years, Euclid will measure the 
shapes and redshifts of billions of 

galaxies, across ~1/3 of the sky
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On July 1st 2023, Euclid was launched to L2

[ESA’s Euclid space satellite]

First public data release expected in 2026

For 6 years, Euclid will measure the 
shapes and redshifts of billions of 

galaxies, across ~1/3 of the sky
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Which are the Euclid primary observables?

Background galaxies

foreground 

galaxies 

(positions)

Lensed image

of background 
galaxies (shapes)
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Summarise maps of galaxy positions/shapes using three 2-point 
statistics (3x2pt) measured at 10 tomographic redshif bins

Cosmic Shear

Galaxy clustering

Galaxy-Galaxy lensing

3x2pt photometric probes
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Summarise maps of galaxy positions/shapes using three 2-point 
statistics (3x2pt) measured at 10 tomographic redshif bins

Cosmic Shear

Galaxy clustering

Galaxy-Galaxy lensing

3x2pt photometric probes

…described by angular power spectra CXY
ij (ℓ) = ∫ dz WX

i (z)WY
j (z) Pm(kℓ, z)
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Swyft analysis of Euclid 3x2pt

ĈAB
ij (ℓ) = CAB

ij (ℓ) + nAB
ij (ℓ)

𝒩(0,C)
We generate 50k realisations of 

3x2pt spectra with gaussian noise

1. Simulator:

NOTE: We use a simplified simulator/likelihood (12 nuisance params)
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Swyft analysis of Euclid 3x2pt

ĈAB
ij (ℓ) = CAB

ij (ℓ) + nAB
ij (ℓ)

𝒩(0,C)
We generate 50k realisations of 

3x2pt spectra with gaussian noise

1. Simulator:

2. Network: We pre-compress spectra into features

{H0, ωcdm, ns . . . } + {AIA, b1, . . . }
Nparams

cosmo nuisance

x = .... . .

Nspectra × Nbin,ℓ

.............................

..........................

ℓℓ

C
AB ij

(ℓ
)

....

compression

1 Cholesky

2 PCA

3 Linear

S1

..
.

S2Nparams

features

θi

θj

Si2
Sj1

Sj2

Si1

θ = θi

Si2

0
Si1

p(θi, θj |x)
p(θi |x)

ratio estimators
∀(i, j), where i ≠ j

NOTE: We use a simplified simulator/likelihood (12 nuisance params)
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Forecast ΛCDM 

posteriors
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MNRE & MCMC are in 
excellent agreement! 
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Forecast ΛCDM 

posteriors

MNRE & MCMC are in 
excellent agreement! 

Dramatic reduction 

in CPU time!
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What about combining different cosmological probes?
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What about combining different cosmological probes?

Canonical example:
Planck 2018 Results. VI. [1807.06209]
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Joint analyses of CMB & LSS

CMB

LSS

             Very complementary 

(high-  vs. low- , linear vs. non-linear)z z
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Joint analyses of CMB & LSS

CMB

LSS

             Very complementary 

(high-  vs. low- , linear vs. non-linear)z z
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Can we do CMB+LSS analyses in SBI?
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Can we do CMB+LSS analyses in SBI?
Unfortunately, building a realistic Planck simulator seems very challenging
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Can we do CMB+LSS analyses in SBI?
Unfortunately, building a realistic Planck simulator seems very challenging

BUT we can easily build an “effective” 
simulator using posterior samples 
from a previous MCMC run

a = θ − θ′￼

fϕ(θ |a = 0) ≃ p(θ |x0)

prior samples posterior samples
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Application to evolving dark energy

[DESI BAO DR2: 2503.14738]

wCPL(a) = w0 + wa(1 − a)
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Application to evolving dark energy

[DESI BAO DR2: 2503.14738]

wCPL(a) = w0 + wa(1 − a)
What can Euclid data (and 

its combination with current 
probes) tell us about this?

Perform forecast assuming the 
bestfit  model hinted 

by 

w0waCDM
DESI + CMB + Pantheon+
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Forecast w0waCDM posteriors

Baseline = DESI + Planck + Pantheon+

°1.0 °0.9 °0.8 °0.7

w0

°1.2

°1.0

°0.8

°0.6

°0.4

°0.2

0.0

w
a

Baseline

§CDM MCMC

SBI



38

Forecast w0waCDM posteriors

Baseline = DESI + Planck + Pantheon+

Euclid alone could detect the fiducial 
 model at the  levelw0waCDM ∼ 5σ
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Forecast w0waCDM posteriors

Baseline = DESI + Planck + Pantheon+

Euclid alone could detect the fiducial 
 model at the  levelw0waCDM ∼ 5σ

The combination with Planck+DESI 
data would rise the detection to  ∼ 7σ
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SBI is in good agreement with MCMC, 
while requiring only ~3% of the number 
of model evaluations used by MCMC

Forecast w0waCDM posteriors
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Conclusions

Euclid's view of the Perseus cluster of galaxies

Emulators achieve ultra-fast model evaluations 
 applied to decaying neutrino models, these can 

relax current mass bounds up to 
→

∑ mν < 0.24 eV

SBI methods provide a simulator-efficient and scalable 
alternative to MCMC  applied to Euclid+Planck, these 
datasets could detect evolving dark energy at

→
∼ 7σ

Modern deep learning techniques will be key

to learn as much as we can about the dark 
sector and neutrinos from future data
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Conclusions

Euclid's view of the Perseus cluster of galaxies

Emulators achieve ultra-fast model evaluations 
 applied to decaying neutrino models, these can 

relax current mass bounds up to 
→

∑ mν < 0.24 eV

SBI methods provide a simulator-efficient and scalable 
alternative to MCMC  applied to Euclid+Planck, these 
datasets could detect evolving dark energy at

→
∼ 7σ THANK YOU!

g.francoabellan@uva.nl

Modern deep learning techniques will be key

to learn as much as we can about the dark 
sector and neutrinos from future data
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BACK-UP
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Errors in emulated CMB spectra for neutrino decays

The 1σ and 2σ percentile errors in the CMB spectra (from 

the test set) are almost always below 1%
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Strategy: train a neural network                             as a binary classifier,

so that

dϕ(x, θ) ∈ [0,1]

(x, θ) ∼ p(x, θ) = p(x |θ)p(θ)

(x, θ) ∼ p(x)p(θ)

dϕ(x, θ) ≃ 1

dϕ(x, θ) ≃ 0

if

if

Note: Φ denotes all the network parameters
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We have to minimise a loss function w.r.t. the network params. Φ

L[dϕ(x, θ)] = − ∫ dxdθ [p(x, θ)ln(dϕ(x, θ)) + p(x)p(θ)ln(1 − dϕ(x, θ))]

which yields

dϕ(x, θ) ≃
p(x, θ)

p(x, θ) + p(x)p(θ)
=

r(x; θ)
r(x; θ) + 1
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Posteriors for 3x2pt

nuisance parameters
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. + 5 mins (training)
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MNRE & MCMC are again 
in good agreement 
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Does MNRE perform well with highly non-Gaussian posteriors?

As an example, we test a model of CDM decaying to DR + WDM 

(proposed to explain the S8 tension)

e−Γtχ

γ′￼

ψ

Decay rate Γ
WDM velocity kick vk

[Abellán et al. 2102.12498]
[Bucko et al. 2307.03222]
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Forecast constraints 

on decaying DM

Improve current limits by 
~1 order of magnitude!

MNRE & MCMC in 
good agreement 

3 hours

     vs.

8 days!
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But can we trust our results?

…even if NNs are often seen as ''black boxes’’, it is possible to perform 
statistical consistency tests which are impossible with MCMC
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Trained networks can estimate effortlessly 

the posteriors for all simulated observations
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Ex: Is the estimated 68.27% interval covering the

ground truth in ~68% of the cases? 

H0

65.0 67.0 69.0
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We can empirically estimate the Bayesian coverage

Converged network Non-converged network

H0 H0

H
0

H
0
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Coverage test for Stage-IV 3x2pt

Empirical coverage and confidence level

match to excellent precision!

GFA++ 2403.14750


